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RESUMO 

 

 

 

 

ARAUJO, André Campêlo. Predição e associação genômica via haplótipos em 

ruminantes. Itapetinga, BA: UESB, 2022. 174p. Tese. (Doutorado em Zootecnia, Área 

de Concentração em Produção de Ruminantes) *. 

 

 Os haplótipos são conjutos de loci adjacentes que apresentam maior probabilidade de 

serem herdados conjuntamente, possuindo algumas vantagens quando comparados aos 

tradicionais polimorfismos de base única (SNPs, de Single Nucleotide Polymorphisms). 

Dentre essas vantagens podem ser citadas a possibilidade de estarem em maior 

desequilíbrio de ligação (LD, de Linkage Disequilibrium) com os loci de característica 

quantitativa (QTLs, de Quantitative Trait Loci) ou mutações causais e capturar efeitos 

epistáticos. No entanto, os haplótipos tem sido subutilizados quando comparados aos 

SNPs. Nesse sentido, objetivou-se avaliar o desempenho de predições genômicas de 

valores genéticos e associações genômicas ampla utilizando haplótipos em bovinos e 

ovinos em comparação ao uso de SNPs. Um primeiro estudo de simulação foi realizado 

para avaliar a acurácia, viés e custos computacionais para predição de valores genéticos 

genômicos (GEBVs, de Genomic Estimated Breeding Values) utilizando haplótipos em 

populações com diversos níveis de diversidade genética. Nesse estudo foram simulados 

programas de melhoramento de ovinos genotipados com um painel de SNPs de alta 

densidade (600K). Duas características foram simuladas, uma com moderada (0,30) e 

outra com baixa (0,10) herdabilidade. O melhor preditor linear não viesado genômico em 

passo único (ssGBLUP, de Single-step Genomic Best Linear Unbiased Prediction) foi 

utilizado para estimar os GEBVs utilizando: 1) apenas SNPs; 2) SNPs fora dos blocos e 

haplótipos de blocos com diferentes LD (0,1, 0,3 e 0,6) em uma única matriz de 

relacionamento genônico (G); 3) SNPs fora dos blocos e haplótipos de blocos com 

diferentes LD (0,1, 0,3 e 0,6) em duas matrizes G diferentes; e 4) apenas os haplótipos de 

blocos com diferente LD (0,1, 0,3 e 0,6). Todas as predições genômicas foram feitas 

utilizando os softwares da familia BLUPf90. O aumento no tempo de análise utilizando 

os haplótipos foi de no máximo 7 horas quando comparado com o uso de SNPs. A 
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acurácia e o viés de predição entre SNPs e haplótipos variou de 0,11 até 0,54 e de -0,78 

até -0,08 em populações simuladas com alto e baixo tamanho efetivo populacional (Ne), 

respectivamente. A acurácia e o viés de predição entre os métodos baseados em SNP e 

haplótipos foram semelhantes nas cinco populações simuladas com Ne diferentes, 

indicando que ambas as abordagens podem ter desempenho semelhante dependendo da 

estrutura dos dados e independentemente da herdabilidade. Um segundo estudo teve o 

objetivo de detectar QTLs e genes candidatos para temperamento ao ano (YT, de Yearling 

Temperament) em bovinos da raça Angus dos Estados Unidos, por meio de estudos de 

associação genômica ampla (GWAS, de Genome Wide Association Study) usando-se 

haplótipos. Foram utilizados aproximamente 266 K animais com fenótipos para YT, dos 

quais aproximadamente 70 K tinham genótipos para um SNP chip de 50 K marcadores. 

A GWAS em passo único tradicional (ssGWAS, de Single-step GWAS) e ponderada 

(WssGWAS, de Weighted ssGWAS) foram investigadas utilizando haplótipos de blocos 

com LD baixo, médio e alto (0,15, 0,50 e 0,80, respectivamente) incluindo ou não os 

SNPs fora dos blocos. A WssGWAS não apresentou vantagens comparada com a 

ssGWAS. A ssGWAS usando haplótipos deve incluir os SNPs fora dos blocos e usar 

diferentes LD para aumentar a possibilidade de encontrar regiões cromossômicas 

canditadas para as características de interesse zootécnico. Os genes candidados para YT 

foram: ATXN10, ADAM10, VAX2, ATP6V1B1, CRISPLD1, CAPRIN1, FA2H, SPEF2, 

PLXNA1 e CACNA2D3; e estão envolvidos em processos biológicos e vias metabólicas 

importantes e relacionadas a características comportamentais, interações sociais e 

agressividade em bovinos. No terceiro estudo, predições genômicas utilizando SNPs e 

haplótipos foram realizadas para características de crescimento, lã e reprodutivas em 

ovinos da raça Rambouillet dos Estados Unidos. O número de registros fenotípicos 

variou, aproximadamente, de 5 K a 28 K nas características avaliadas, que foram peso ao 

nascimento (BWT, de birth weight), peso pós-desmama (PWT, de post-weaning weight), 

peso ao ano (YWT, de yearling weigth), diâmetro da fibra da lã ao ano (YFD, de yearling 

fiber diameter), peso da lã suja ao ano (YGFW, de yearling greasy fleece weight) e 

número de cordeiros nascidos (NLB, de number of lambs born). Um total de 741 animas 

foram genotipados para um painel de SNPs moderado (50 K, n = 677) e alto (600K, n = 

64), dos quais 32 K SNPs em comum nos pois painéis depois do controle de qualidade 

foram utilizados para analises posteriores.  O ssGBLUP usando SNPs (H-BLUP) ou 

haplótipos (HAP-BLUP) de blocos com diferentes limites de LD (0,15, 0,35, 0,50, 0,65 

e 0,80) foram comparados entre si e com BLUP considerando o pedigree (A-BLUP). O 
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peso apropriado da informação genômica (parâmetro alfa) também foi estudado. A 

acurácia teórica média variou de 0,499 (A-BLUP para PWT) a 0,795 (HAP-BLUP usando 

haplótipos de blocos com limite de LD de 0,35 e alfa igual a 0,95 para YFD). As acurácias 

de predição variaram de 0,143 (A-BLUP para PWT) a 0,330 (A-BLUP para YGFW), 

enquanto o viés de predição variou de -0,104 (H-BLUP para PWT) a 0,087 (HAP-BLUP 

usando haplótipos de blocos com limite de LD de 0,15 e alfa igual a 0,95 para YGFW). 

A dispersão dos GEBVs variou de 0,428 (A-BLUP para PWT) a 1,035 (A-BLUP para 

YGDW). O uso de informações genômicas de SNPs ou haplótipos proporcionou 

acurácias de predição e teóricas semelhantes ou superiores e reduziu a dispersão do 

GEBVs para características de crescimento, lã e reprodutivas em ovelhas Rambouillet, 

enquanto o viés de predição não mostrou melhorias claras quando comparado às 

predições com pedigree.  

 

PALAVRA-CHAVE: blocos de haplótipos, desequilíbrio de ligação, genes candidatos, 

ovinos e bovinos, valor genético 
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ABSTRACT 

 

 

 

 

ARAUJO, André Campêlo. Genomic prediction and association via haplotypes in 

ruminants. Itapetinga, BA: UESB, 2022. 174p. Thesis. (Doctorate in Animal Science, 

Area of Concentration in Ruminant Production)*. 

 

Haplotypes are sets of adjacent loci that are more likely to be inherited together, having 

some advantages when compared to traditional Single Nucleotide Polymorphisms 

(SNPs). Among these advantages, the possibility of being in greater linkage 

disequilibrium (LD) with the quantitative trait loci (QTLs) or causal mutations and 

capturing epistatic effects are the main ones. However, haplotypes have been 

underutilized compared to SNPs. In this context, the objective was to evaluate the 

performance of genomic predictions of breeding values and genome wide associations 

using haplotypes in cattle and sheep compared to the use of SNPs. A first simulation study 

was carried out to evaluate the accuracy, bias and computational costs in predicting the 

genomic estimated breeding values (GEBVs) using haplotypes in populations with 

different levels of genetic diversity. In this study, breeding schemes for sheep genotyped 

with a high-density SNP panel (600 K) were simulated. Two traits were simulated, one 

with moderate (0.30) and the other with low (0.10) heritability. The Single-step Genomic 

Best Linear Unbiased Predictor method (ssGBLUP) was used to estimate the GEBVs 

considering: 1) only SNPs; 2) out-of-block SNPs and haplotypes from blocks with 

different LD (0.1, 0.3, and 0.6) in a single genomic relationship matrix (G); 3) out-of-

block SNPs and haplotypes from blocks with different LD (0.1, 0.3, and 0.6) in two 

different G matrices; and 4) only haplotypes from blocks with different LD (0.1, 0.3 and 

0.6). All the genomic predictions were done using the BLUPf90 softwares. The analysis 

time increased up to 7 hours by fitting the haplotypes compared to SNPs. The prediction 

accuracy and bias between SNPs and haplotypes ranged from 0.11 to 0.54 and from -0.78 

to -0.08 in simulated populations with high and low effective population size (Ne), 

respectively. The genomic prediction accuracy and bias between the SNP and haplotype-

based methods were similar across the five populations simulated with different Ne, 
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indicating that both approaches may perform similarly depending on the data structure 

and regardless of heritability. A second study aimed to detect QTLs and candidate genes 

for yearling temperament (YT) in Angus cattle from the United States through genome-

wide association studies (GWAS) using haplotypes. Approximately 266 K animals with 

phenotypes for YT were used, of which approximately 70 K had genotypes for a SNP 

chip of 50 K markers. Traditional (ssGWAS, from Single-step GWAS) and weighted 

(WssGWAS, from Weighted ssGWAS) single-step GWAS were investigated using block 

haplotypes with low, medium and high LD (0.15, 0.50 and 0.80, respectively) including 

or not including the SNPs outside the blocks. WssGWAS showed no advantages 

compared to ssGWAS. The ssGWAS using haplotypes should include the SNPs outside 

the blocks and use different LD to increase the possibility of finding chromosomal regions 

associated with YT. Candidate genes for YT are: ATXN10, ADAM10, VAX2, ATP6V1B1, 

CRISPLD1, CAPRIN1, FA2H, SPEF2, PLXNA1 and CACNA2D3; which are involved in 

important biological processes and metabolic pathways related to behavioral traits, social 

interactions and aggressiveness in cattle. In the third study, genomic predictions using 

SNPs and haplotypes were performed for growth, wool and reproductive traits in 

Rambouillet sheep from the United States. The number of phenotype records ranged from 

approximately 5 K to 28K in the evaluated traits, which were birth weight (BWT), post-

weaning weight (PWT), yearling weight (YWT), yearling fiber diameter (YFD), yearling 

greasy fleece weight (YGFW) and number of lambs born (NLB). A total of 741 animals 

were genotyped for a panel of moderate (50K, n=677) and high (600K, n=64) density 

SNPs, of which 32K SNPs in common in both panels after quality control were used for 

further analyses. The ssGBLUP using SNPs (H-BLUP) or haplotypes (HAP-BLUP) from 

blocks with different LD thresholds (0.15, 0.35, 0.50, 0.65, and 0.80) were compared with 

each other and with BLUP considering the pedigree (A-BLUP). The appropriate weight 

of genomic information (alpha parameter) was also studied. The average theoretical 

accuracy ranged from 0.499 (A-BLUP for PWT) to 0.795 (HAP-BLUP using haplotypes 

from blocks with LD threshold of 0.35 and alpha equal to 0.95 for YFD). The prediction 

accuracies ranged from 0.143 (A-BLUP to PWT) to 0.330 (A-BLUP to YGFW), while 

the prediction bias ranged from -0.104 (H-BLUP to PWT) to 0.087 (HAP-BLUP using 

haplotypes from blocks with LD threshold of 0.15 and alpha equal to 0.95 for YGFW). 

The dispersion of GEBVs ranged from 0.428 (A-BLUP to PWT) to 1.035 (A-BLUP to 

YGDW). The use of genomic information from SNPs or haplotypes provided similar or 

superior prediction and theoretical accuracies and reduced the dispersion of GEBVs for 
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growth, wool and reproductive traits in Rambouillet sheep, while the prediction bias did 

not show clear improvements when compared to predictions with pedigree. 

 

KEY-WORDS: haplotype blocks, linkage disequilibrium, candidate genes, sheep and 

cattle, breeding value  
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I – REFERENCIAL TEÓRICO 

 

 

 

 

1.1 Introdução 

 

O melhoramento genético clássico tem sido feito com base na obtenção dos 

valores genéticos dos indivíduos, resultante da solução das equações de modelo misto 

(Henderson, 1984), e seleção dos reprodutores a partir dos valores genéticos. Essa 

metodologia é dependente da coleta de uma grande quantidade de observações fenotípicas 

e informações de pedigree feitas de forma acurada em indivíduos relacionados. Ganhos 

genéticos relevantes tem sido obtidos com o melhoramento genético clássico, entretanto, 

o longo tempo para se obter os valores genéticos, as baixas acurácias de predição e os 

altos custos dos testes de progênie são os principais entraves ao aumento do progresso 

genético em ruminantes para algumas características (de difícil mensuração, que se 

manifestam mais tarde na vida dos animais ou com baixa herdabilidade por exemplo) 

utilizando meios tradicionais (Brito et al., 2020; Mcmanus et al., 2010). 

A base do sucesso da produção animal em países desenvolvidos é, além de 

melhoras nas instalações e no manejo em geral, a presença de programas de 

melhoramento bem fundamentados. Além do mérito genético dos indivíduos que serão 

pais das próximas gerações e da herdabilidade das características, o sucesso dos 

programas de melhoramento depende da acurácia de predição, intensidade de seleção e 

da velocidade que os ganhos serão passados para progênie. Nesse sentido, a predição 

genômica (GP, de Genomic Prediction) consiste em uma ferramenta interessante para 

melhorar a eficiência do ganho genético, pois, as informações de densos painéis de 

polimorfismos de base única (SNPs, de Single Nucleotide Polymorphisms) são utilizadas 

para predizer os valores genéticos genômicos dos indivíduos (Meuwissen et al., 2001), 

proporcionando maiores ganhos genéticos. 

As informações de SNP chips com dezenas a centenas de milhares de marcadores 

distribuídos ao longo de todo o genoma têm se mostrado eficiente para promover ganhos 

tanto no melhoramento genético animal como no vegetal (Moreira et al., 2020; Lourenco 

et al., 2020). Dentre as contribuições da GP, destacam-se o aumento da acurácia de 

predição, a possibilidade de seleção mais precoce e aumento do número de indivíduos 
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disponíveis para a seleção, aumentando o ganho genético anual (Brito et al., 2017; 

Meuwissen et al., 2001; Mrode et al., 2018; Rupp et al., 2016). 

A GP possibilita contabilizar o parentesco dos indivíduos em nível molecular, ou 

seja, em nível dos loci de características quantitativas (QTLs, de Quantitative Trait Loci) 

presentes no genoma (VanRaden, 2008). O conhecimento das regiões genômicas que 

afetam a variação fenotípica é imprescindível para realizar a GP, sendo o objetivo dos 

estudos de associação genômica ampla (GWAS, de Genome-wide Association Studies). 

Esses estudos permitem elucidar a arquitetura genética das características quantitativas, 

grande maioria das características de interesse zootécnico, o que pode possibilitar a 

inclusão dessa informação para fomentar o progresso genético (Schmid & Bennewitz, 

2017).  

Os SNPs se tornaram os marcadores mais utilizados tanto na GWAS quanto na 

GP, entretanto, haplótipos também podem ser utilizados nessas abordagens (Araujo et al. 

2021, 2022), fato que precisas ser melhor avaliado. Os haplótipos são os alelos de 

conjuntos de loci adjacentes e espera-se que sejam herdados juntos, ou seja, que estão 

ligados em blocos (blocos de haplótipos ou haploblocos) (Gabriel et al., 2002). O uso de 

haplótipos na GP e GWAS proporciona algumas vantagens comparado aos SNPs, 

podendo estar em maior desequilíbrio de ligação (LD, de Linkage Disequilibrium) com 

os QTLs do que os SNPs e capturar efeitos epistáticos dentro dos haploblocos (Hess et 

al., 2017; Liang et al., 2020; Jiang et al., 2018). No entanto, a maior quantidade de etapas 

e recursos computacionais nas análises com haplótipos podem ser citatadas como 

desvantagens (Araujo et al., 2021; Cuyabano et al., 2014). 

A indústria da ovinocultura tem se transformado no que diz respeito a oferta de 

produtos, dando mais atenção à produção de carne em relação a lã. O mercado mundial 

da carne de ovinos em 2020 movimentou aproximadamente 7 bilhões de dólares em 

exportações, apresentando tendência de crescimento nos últimos 10 anos (FAOSTAT, 

2021). No caso da carne bovina, as exportações mundiais movimentaram 

aproximadamente 39 bilhões de dólares em 2020, também, com tendência de crescimento 

dos últimos 10 anos (FAOSTAT, 2021). Considerando que a oferta de carne tende a 

crescer em 14% (5,9 e 15,7% para as carnes bovina e ovina, respectivamente) até 2030, 

principalmente, devido ao aumento de renda e crescimento populacional (FAO, 2021), o 

melhoramento genético configura-se como um componente indispensável para alcançar 

tais ganhos. Nesse sentido, pesquisar novas estratégias que possam otimizar os ganhos 

genéticos advindos das avaliações genética e seleção são importantíssimas. 
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1.2 Predição genômica utilizando haplótipos 

 

A GP consiste em utilizar as informações de densos painéis de marcadores SNPs 

para estimar os valores genético genômicos (GEBVs, de Genomic Estimated Breeding 

Values) dos candidatos a seleção (Meuwissen et al., 2001). No entanto, para a 

implementação da GP, é necessário ter programas de melhoramento estabelecidos (Rupp 

et al., 2016) e o conhecimento do LD, que pode ser afetado pela diversidade genética e 

estrutura populacional dos rebanhos (Goddard, 2009). 

O LD pode ser definido como a associação não aleatória entre dois loci, sendo o 

LD entre marcadores-QTLs a base da GS (Meuwissen et al., 2001). Maiores tamanhos 

efetivos populacionais (Ne) e distâncias entre os loci estão relacionados a menores LD, 

sendo necessário maiores quantidades de marcadores para obter melhores acurácias de 

predição (Brito et al., 2017). Nesse sentido, como os haplótipos podem estar em maior 

LD com os QTLs do que apenas os SNPs (Calus et al., 2008; Cuyabano et al. 2014, 2015; 

Hess, et al., 2017; Villumsen et al., 2019), vários trabalhos tem avaliado o uso haplótipos 

na GP. 

O primeiro estudo de GP (Meuwissen et al., 2001) utilizou haplótipos em vez de 

SNPs como covariáveis no modelo para predizer os GEBVs, mostrando o potencial dessa 

técnica. Subsequentemente, Calus et al. (2008) e Villumsen et al. (2009) mostraram, 

também, utilizando dados simulados, que os haplótipos resultaram em maiores acurácias 

e menores viés de predição quando comparado com SNPs. Todavia, esses mesmos autores 

afirmaram que a superioridade dos haplótipos sobre os SNPs é dependente de fatores 

relacionados com a forma de criação e o tamanho dos haploblocos. 

Em relação a divisão do genoma nos haploblocos, pode-se destacar os métodos 

que utilizam comprimentos fixos (Villumsen et., 2009) e variáveis (Rinaldo et al., 2005). 

Nos métodos fixos, o genoma é dividido de acordo com o número de SNPs no haplobloco 

ou o comprimento em megabases, apresentando a vantagem de serem facilmente obtidos 

(Hess et al., 2017). No entanto, os haploblocos fixos não consideram o LD ou pontos de 

recombinação no seu interior (Cuyabano et al., 2014), sendo essas últimas desvantagens 

desse método. A construção de haploblocos com comprimentos variáveis contabiliza a 

co-segregação dos alelos através da identificação de hotspots de recombinação e 

considera o LD, no entanto, podem demandar maior tempo de construção e serem 

específicos de uma determinada população (Hayr, 2016). 
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Ainda dentre os fatores que podem afetar as análises considerando haplótipos, a 

densidade do painel de marcadores e o modelo usado também devem ser considerados. 

Calus et al. (2009) recomendaram o uso de painéis de marcadores mais densos para a GP, 

pois o uso de haplocos mais densos aumentaria a variância explicada pelos QTLs 

flanqueados pelos marcadores implicando em melhores resultados da predição. O uso de 

modelos que primeiro estimam os efeitos dos marcadores para então estimar os valores 

genéticos, como a maioria dos modelos Bayesianos por exemplo, tem efeito, 

principalmente, no tempo de análise (Araujo et al., 2021); visto que, os modelos 

Bayesianos apresentam desempenho semelhante ao BLUP genômico (GBLUP) para 

características poligênicas (Su et al., 2014), que são maioria entre as características de 

interesse zootécnico.  

O tempo, maior quantidade de etapas e o custo computacional são desvantagens 

da GP usando haplótipos quando comparado aos SNPs (Cuyabano et al., 2014; Hess et 

al., 2017). Araujo et al. (2021) utilizando o método single-step GBLUP (ssGBLUP) 

observaram menores aumentos no tempo de análise para realizar a GP usando haplótipos 

do que os observados por Cuyabano et al. (2015) usando maiores números de SNPs 

princinpais para derivar os haplótipos com modelos BLUP Bayesiano e de mistura.  

No GBLUP e ssGBLUP os valores genéticos são obtidos diretamente a partir das 

equações do modelo misto (MME, de Mixed Model Equation), no entanto, assumem o 

modelo infinitesimal (os marcadores explicam similar e pequena proporção da variância 

genética da característica) (Wang et al., 2012). A principal diferença entre GBLUP e 

ssGBLUP consiste em que no primeiro são analisados apenas animais genotipados ou 

pseudo-fenótipos de avaliações genéticas prévias (valores genéticos estimados 

desregredidos) devem ser utilizados para considerar informações de outros animais, 

enquanto no segundo, ambos animais genotipados e não genotipados são considerados 

diretamente, o que tem apresentado resultados semelhantes ou melhores na GP (Legarra 

et al., 2014). Uma vantagem dos modelos Bayesianos sobre o GBLUP e ssGBLUP seria 

a possibilidade de incluir informação prévia a respeito dos efeitos dos marcadores, 

flexibilizando a pressuposição do modelo infinitesimal (Meuwissen et al., 2001).        

A maior flexibilidade dos modelos Bayesianos quanto a arquitetura genética da 

característica levou à ponderação da matriz genômica de parentesco (G) com o efeito dos 

SNPs no GBLUP (Su et al., 2014) e no ssGBLUP (Wang et al., 2012), no intuito de 

contornar a pressuposição do modelo infinitesimal. De forma geral, a ponderação da 

matriz G proporciona melhores acurácias e menores viés do que a não ponderação dessa 
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matriz tanto no GBLUP (Su et al., 2014; Tiezzi & Maltecca, 2015) como no ssGBLUP 

(Lourenco et al., 2017; Zhang et al., 2016), sendo semelhante ao uso dos modelos 

Bayesianos em casos de arquiteturas genéticas que esses modelos seriam indicados. 

Poucos trabalhos avaliaram o uso haplótipos principalmente no ssGBLUP (Araujo et al., 

2021; Feitosa et al., 2019; Teissier et al., 2020). 

Em dados reais e utilizando o LD como método de construção dos haploblocos, 

Cuyabano et al. (2014) observaram que haploblocos com LD de 0,45 promoveram 

melhores acurácias de predição do que o ajuste de SNPs utilizando modelos de mistura 

Bayesianos, para proteína do leite, fertilidade e mastite em bovinos da raça Holandês. 

Ainda em gado Holandês, Cuyabano et al. (2015) ajustaram haplótipos construídos com 

base apenas em SNPs significativos em uma análise prévia, com o intuito de capturar 

haplótipos próximos aos QTLs, e observaram melhores acurácias de predição nessa 

abordagem do que com os SNP para as mesmas características.  

Em uma população composta de gado de leite, Hess et al. (2017) usaram vários 

modelos Bayesianos (BayesA, BayesB e BayesN) para ajustar haplótipos de comprimento 

fixo considerando diversos limites de frequência mínima para o descarte de alelos dos 

haploblocos sobre características produtivas. Esses autores observaram melhores 

acurácias de predição quando foram ajustados haploblocos de 250 kb com descarte de 

haplótipos com menos de um por cento de frequência. 

Deve-se notar que a grande maioria dos resultados para GP usando haplótipos, 

tanto em dados reais como em dados simulados, foi demonstrado em bovinos. Existem 

controvérsias em alguns trabalhos mostrando pouco ganho (Hess et al., 2017; Karimi et 

al., 2018; Mucha et al., 2019) e outros bastante promissores (Liang et al., 2020; Xu et al., 

2020). Poucos trabalhos de GP ajustando haplótipos em vez de SNPs foram encontrados 

na literatura em pequenos ruminantes (Araujo et al., 2021; Teissier et al., 2020), 

demostrando a necessidade de avaliar essas metodologias nessas espécies.  

 

1.3 Associação genômica utilizando haplótipos 

 

As vantagens e desvantagens, bem como, as formas de criação dos haploblocos, 

descritas anteriormente para a GP com haplótipos podem ser estendidas para as análises 

com GWAS. Entretanto, como os estudos de GWAS tem um foco diferente dos estudos 

de GP, as implicações do uso de haplótipos nessa abordagem, também, apresentam 

particularidades.  
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Apesar de ambas as metodologias apresentarem um objetivo comum, estimar 

corretamente os efeitos dos alelos, a GP tem o objetivo principal de predizer os valores 

genéticos de forma acurada, enquanto a GWAS visa detectar as posições dos QTLs no 

genoma (Calus et al., 2009). Nesse sentido, Callus et al. (2009) afirmaram que os modelos 

de GP tentam maximizar a variância explicadas pelos QTLs presentes no genoma, 

enquanto que na GWAS ocorre a maximização do contraste entre uma região que tem um 

QTL e as outras que não tem; fazendo com que algumas vezes o modelo considerado 

ótimo para uma metodologia pode não ser o mesmo para a outra. Essa discussão implica 

no fato que, apesar de modelos usando haplótipos não apresentarem melhores acurácias 

de predição quando comparados aos SNPs, eles podem ser utilizados na investigação de 

QTLs devido o objetivo ser diferente (Araujo et al. 2021, 2022). 

Usar apenas SNPs nos estudos de GWAS pode implicar em menor poder de 

detecção de QTLs, visto que, as regiões flanqueadas podem proporcionar informações 

limitadas (Guo et al., 2009; Tang et al., 2009), devido ao menor LD entre SNP-QTL 

comparado ao LD haplótipo-QTL (Araujo et al., 2022). No entanto, os haplótipos não 

demonstraram vantagens sobre os SNPs na detecção de QTLs com efeitos pequenos 

(Lorenz et al., 2010) e podem não capturar os QTLs em regiões genômicas com baixo 

nível de LD. Nesse sentido, Braz et al. (2019) encontraram dois marcadores associados 

com a força de cisalhamento da carne em bovinos Nelore que não foram detectados por 

GWAS usando haplótipos, recomendando também o uso de SNPs em estudos de 

associação. 

Por outro lado, vários estudos tem recomendado o uso de haplótipos na GWAS 

pelas vantagens, mencionadas anteriormente, que essa abordagem pode oferecer. Ao usar 

haplótipos na GWAS, Braz et al. (2019) encontraram 4 vezes mais marcadores associados 

com a força de cisalhamento da carne de Nelore quando comparada ao GWAS usando os 

SNPs (33 haplótipos e oito SNPs, respectivamente), dos quais apenas dois não foram 

detectados pelos haplótipos. Aumento semelhante no número de marcadores associados 

quando se considera haplótipos na GWAS em vez de SNPs foi demonstrado por Bovo et 

al. (2021) ao analisarem o número de tetas em suínos. No entanto, esses últimos autores 

também recomendaram o uso de SNPs, pois, algumas regiões genômicas importantes não 

detectadas pelos haplótipos foram detectadas pelos SNPs. 

O uso haplótipos oriundos de janelas sobrepostas com um número fixo de SNPs 

foi sugerido como mais poderoso na GWAS do que apenas os SNPs ou haplótipos 

oriundos de haploblocos com base no LD, por serem mais eficientes para regiões com 
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baixo LD (Guo et al., 2009). No entanto, Araujo et al. (2022) demonstraram que algumas 

regiões cromossômicas são exclusivas para haploblocos com diferente LD (0.15, 0.50 e 

0.80 considerados baixo, médio e alto, respectivamente) e que SNPs fora dos blocos 

também devem ser incluídos na análise. Ainda segundo Araujo et al. (2022), essas 

práticas diminuiriam a perda de capacidade de dissecar a arquitetura genética usando 

haploblocos com base no LD devido alguns SNPs não serem alocados para nenhum bloco, 

descrita por Li et al. (2007). Nesse sentido, o uso de ambos SNPs e haplótipos tem sido 

recomendado, uma vez que, aumenta a possibilidade de encontrar QTLs associados com 

a características quantitativas (Araujo et al., 2022; Bovo et al., 2021; Braz et al, 2019). 

 

1.4 Sistemas de produção de bovinos de corte 

 

A carne bovina é uma comodity, movimentando aproximadamente 42 e 39 bilhões 

de dólares em importações e exportações, respectivamente, no ano de 2020 com uma 

tendência de crescimento nos últimos 10 anos (FAOSTAT, 2021). Assim como no caso 

dos sistemas de produção de ovinos, a cadeia produtiva da carne de boi apresenta 

diferenças de acordo sistemas de produção em cada país/ região (Greenwood, 2021). 

Os maiores produtores de carne bovina são os Estados Unidos, seguido pelo 

Brasil, produzindo aproximadamente 12 e 10 milhões de toneladas de carne em 2020, 

respectivamente. Esses países figuraam também no topo do ranking de exportações 

(FAOSTAT, 2021). A maioria dos sistemas de produção de gado de corte nos Estados 

Unidos são desenvolvidos de forma extensiva e, basicamente, a pasto durante a primeira 

fase, com terminação em sistema intensivo utilizando dietas de alta energia (Greenwood, 

2021; Vale et al., 2019).  As principais raças para produção na América do Norte são o 

Angus, Red Angus, Hereford, Simental, Charolais, Gelbvieh, Brangus, Limousin, 

Beefmaster, Shorton e Brahman (Drouillard, 2018). O uso de animais cruzados para abate 

também é comum nos Estados Unidos, sendo esses cruzados entre animais Angus e 

alguma outra raça, inclusive de bovinos leiteiros (Greenwood, 2021). 

O ciclo da produção de gado de corte nos Estados Unidos dura em média de oito 

a 12 anos e é afetado, principalmente, pelo preço do gado, período de gestação, tempo 

que os bezerros levam para atingir o peso de mercado e condições climáticas (USDA, 

2021). A maioria dos confinamentos nos Estados Unidos estão concentrados em três 

estados, sendo eles Nebraska, Kansas e Texas (Drouillard, 2018), devido a maior 

disponibilidade de grãos com melhor qualidade nutricional (Greenwood, 2021).  
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O uso de tecnologias de precisão tem sido pesquisado tanto na América do Norte 

como em outros países no sentido de proporcionar mais ferramentas para auxiliar no 

sistema de produção, no intuito de aumentar a eficiência, sustentabilidade e rentabilidade 

(Aquilani, 2022).  Dentre as aplicações das tecnologias de precisão, o monitoramento do 

comportamento dos animais, bem como, a possibilidade de monitorar todo o ciclo dos 

animais, é promissor devido o comportamento ser uma característica importante para o 

sistema de produção (Brito et al., 2020), com grande impacto econômico e de bem-estar 

(Northcut & Bowman, 2010).  

Apesar de não ser o maior produtor de carne bovina do mundo, o Brasil é o maior 

exportador, exportando aproximadamente 1,7 milhões de toneladas de carne (in natura e 

processados), apresentando crescimento no número de exportações desde 2008 

(FAOSTAT, 2021). O Brasil e os Estados Unidos compartilham o fato de a maior parte 

do sistema de produção ser desenvolvido a pasto (Greenwood, 2021), no entanto, a 

maioria do gado brasileiro é terminado a pasto embora o número de confinamentos esteja 

em crescimento (Vale et al., 2019). Outra diferença evidente entre o sistema de produção 

nesses dois países é a composição dos animais. O gado de corte brasileiro é 

predominantemente Bos taurus indicus, com a raça Nelore como o principal 

representante, sendo que, os animais zebuínos correspondem a aproximadamente 80% do 

rebanho nacional (ABCZ, 2020; Santana Júnior et al., 2016).  

O maior uso de animais zebuínos nos sistemas de produção brasileiros ocorre 

devido a esses bovinos serem mais adaptados as condições tropicais (altas temperaturas, 

resistência e baixa qualidade de pasto) predominantes no Brasil (Santana Júnior et al., 

2016). Não obstante, a qualidade da carne dos animais zebuínos, mais especificamente, o 

marmoreio e composição da gordura e maciez, é menor do que a de animais taurinos, o 

que tem estimulado estrategias de manejo e melhoramento genético para melhorar estas 

características (Braz et al., 2019; Feitosa et al., 2019), além do uso de cruzamentos com 

raças taurinas. 

 

1.5 Sistemas de produção de ovinos de corte 

 

A cadeia produtiva da ovinocultura varia de acordo com o país de origem, sendo 

possível caracterizar alguns tipos de sistemas de produção no mundo. Em sua grande 

maioria, as criações são realizadas a pasto, com baixos investimentos e rebanhos pouco 

numerosos. No entanto, existem países como Nova Zelândia e Austrália, que são 
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referências nessa atividade, tendo como base o manejo mais tecnificado e programas de 

melhoramento bem estabelecidos (Rupp et al., 2016; Mrode et al., 2018).  

A Nova Zelândia e Austrália são responsáveis por mais de dois terços das 

exportações de carne de ovinos (FAOSTAT, 2021), representando maior a parte do 

mercado internacional, atingindo os mais diversos mercados. No caso da Nova Zelândia, 

foram registrados ganhos na ordem 83% em quilos de cordeiros produzidos por ovelha e 

mais de 28% no peso da carcaça de 1990 a 2012 (Beef and Lamb New Zealand, 2012). A 

Austrália é o maior produtor de lã do mundo (FAOSTAT, 2021), mas a produção da carne 

de cordeiro tem ganhado espaço nesse país por ser um produto que vem ganhando 

mercado nos últimos anos em comparação com a lã (Ferguson et al., 2014). Tanto na 

Nova Zelândia quanto na Austrália, o sucesso da atividade está relacionado aos 

investimentos em pesquisa e disseminação das tecnologias nas áreas de manenejo, 

instalações, melhoramento genético e uso de raças especializadas para sistemas de 

produção específicos (Beef and Lamb New Zealand, 2012; MLA, 2016).  

Apesar da Nova Zelândia e Austrália serem tradicionais na produção de ovinos, 

outros países estão emergindo neste setor. Nesse sentido, existem alguns países em 

desenvolvimento que tem implementado programas de melhoramento em ovinos, como 

Etiópia e Índia, tendo como base parcerias com instituições de pesquisa, investindo, 

principalmente, em programas de melhoramento comunitário (Haile et al., 2014). Os 

programas de melhoramento comunitários são alternativas interessantes para pequenos 

produtores, pois, terão acesso a animais melhorados que podem aumentar a produtividade 

(Mrode et al., 2018). 

No Brasil, os programas de melhoramento de ovinos são escassos. A criação de 

pequenos ruminantes ocorre em sua grande maioria, em pequenas propriedades, com 

pouco investimento tecnológico e quase exclusivamente a campo, fazendo com que os 

produtores tenham pouco retorno econômico (Lôbo et al., 2010). Esse cenário 

proporciona vulnerabilidade pela dependência direta do clima e oferta irregular de 

alimento, que aliada a falta de programas de melhoramento colocam outros países na 

América Latina, como Uruguai e Argentina, com maior representatividade na produção 

de cordeiros (Morris et al., 2017). 
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II – OBJETIVO GERAL 

 

 

 

 

Objetivou-se avaliar o desempenho de predições e associações genômicas 

utilizando haplótipos em ruminantes de interesse zootécnico em comparação ao uso de 

SNPs. 

 

2.1 Objetivos específicos        

✓ Avaliar o tempo de análise com o uso haplótipos e SNPs; 

✓ Comparar a acurácia de predição dos GEBVs calculados a partir de SNPs e 

haplótipos utilizando o método ssGBLUP; 

✓ Comparar viés de predição dos GEBVs calculados a partir de SNPs e haplótipos; 

✓ Comparar a dispersão dos GEBVs calculados a partir de SNPs e haplótipos; 

✓ Avaliar os métodos ssGWAS e WssGWAS com o uso de haplótipos; 

✓ Avaliar diferentes formas de construir os haplótipos e inclui-los nos modelos; 

✓ Avaliar a influência da diversidade genética das populações nas predições 

genômicas. 
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Abstract 

The level of genetic diversity in a population is inversely proportional to the linkage 

disequilibrium (LD) between individual single nucleotide polymorphisms (SNPs) and quantitative 

trait loci (QTLs), leading to lower predictive ability of genomic breeding values (GEBVs) in high 

genetically diverse populations. Haplotype-based predictions could outperform individual SNP 

predictions by better capturing the LD between SNP and QTL. Therefore, we aimed to evaluate the 

accuracy and bias of individual-SNP- and haplotype-based genomic predictions under the single-

step-genomic best linear unbiased prediction (ssGBLUP) approach in genetically diverse 

populations. We simulated purebred and composite sheep populations using literature parameters 

for moderate and low heritability traits. The haplotypes were created based on LD thresholds of 

0.1, 0.3, and 0.6. Pseudo-SNPs from unique haplotype alleles were used to create the genomic 

relationship matrix (𝐆) in the ssGBLUP analyses. Alternative scenarios were compared in which 

the pseudo-SNPs were combined with non-LD clustered SNPs, only pseudo-SNPs, or haplotypes 

fitted in a second 𝐆 (two relationship matrices). The GEBV accuracies for the moderate heritability-

trait scenarios fitting individual SNPs ranged from 0.41 to 0.55 and with haplotypes from 0.17 to 

0.54 in the most (Ne ≅ 450) and less (Ne < 200) genetically diverse populations, respectively, and 

the bias fitting individual SNPs or haplotypes ranged between -0.14 and -0.08 and from -0.62 to -

0.08, respectively. For the low heritability-trait scenarios, the GEBV accuracies fitting individual 

SNPs ranged from 0.24 to 0.32, and for fitting haplotypes, it ranged from 0.11 to 0.32 in the more 

(Ne ≅ 250) and less (Ne ≅ 100) genetically diverse populations, respectively, and the bias ranged 

between -0.36 and -0.32 and from -0.78 to -0.33 fitting individual SNPs or haplotypes, respectively. 

The lowest accuracies and largest biases were observed fitting only pseudo-SNPs from blocks 

constructed with an LD threshold of 0.3 (P < 0.05), whereas the best results were obtained using 

only SNPs or the combination of independent SNPs and pseudo-SNPs in one or two 𝐆 matrices, in 

both heritability levels and all populations regardless of the level of genetic diversity. In summary, 

haplotype-based models did not improve the performance of genomic predictions in genetically 

diverse populations. 

1 Introduction 

Genomic selection (GS) (Meuwissen et al., 2001) is now routinely used worldwide in 

livestock and plant breeding programs (Lourenco et al., 2020; Moreira et al., 2020). GS enables the 

prediction of more accurate genomic estimated breeding values (GEBVs) at earlier stages compared 
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to the traditional pedigree-based evaluation (Guarini et al., 2018, 2019; Brito et al., 2017a). The 

advantages of GS compared to the pedigree-based are even greater for lowly-heritable traits, traits 

measured late in life, and sex-limited or expensive-to-measure traits (Daetwyler et al., 2012; 

Lourenco et al., 2020).  

Over the past 15–20 years, several statistical methods have been proposed aiming to obtain 

more accurate and less biased GEBVs. Among the available methods, the single-step genomic best 

linear unbiased prediction (ssGBLUP; Legarra et al., 2009; Aguilar et al., 2010) is widely used to 

perform genomic predictions in livestock. This method enables the simultaneous evaluation of both 

genotyped and non-genotyped individuals and has similar or better statistical properties and 

predictive ability compared to other approaches such as pedigree-based BLUP and multi-step 

GBLUP (Legarra et al., 2014; Aguilar et al., 2010; Guarini et al, 2018; Piccoli et al., 2020). 

Although the pioneer GS study (i.e., Meuwissen et al., 2001) fitted single nucleotide 

polymorphism (SNP) haplotypes as covariates in the models, subsequent studies were mainly 

performed based on individual SNPs. This is most likely due to the additional analytic steps and 

higher computational requirements when fitting haplotype-based models. In this sense, it is 

important to first define the haplotype blocks or haploblocks, which are sizable regions of the 

genome with little evidence of historical recombination (Gabriel et al., 2002), i.e., a genomic region 

between two or more marker loci. More recently, the use of haplotypes as covariates in genomic 

evaluations rather than single SNPs has been further investigated due to many potential advantages. 

Haplotypes are more polymorphic than individual SNPs because they can be multi-allelic 

(Meuwissen et al., 2014) and they can be in stronger linkage disequilibrium (LD) with Quantitative 

Trait Loci (QTLs) compared to individual SNPs with low minor allele frequency (MAF) (Hess et 

al., 2017). In this context, the potential stronger LD between haplotypes and QTL in comparison to 

individual SNPs can yield more accurate GEBVs (Calus et al., 2008; Cuyabano et al., 2014; 2015). 

Moreover, haplotype alleles have the potential to capture epistatic effects within blocks and the 

QTL can be flanked by SNPs that delimit the haploblock (Hess et al., 2017; Jiang et al., 2018; 

Karimi et al., 2018).  

Previous studies based on simulated data have shown that fitting haplotypes can 

substantially improve the performance of genomic predictions compared to individual SNP-based 

methods (Calus et al., 2008; Villumsen et al., 2009). However, none or only small increases in the 

predictive ability of GEBVs have been observed in practice (e.g., Cuyabano et al., 2014; 2015; Hess 

et al., 2017; Karimi et al., 2018; Mucha et al., 2019; Won et al., 2020). The large majority of the 

studies evaluating haplotype-based models were done in dairy cattle populations (real or simulated 
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datasets), which usually have high LD levels between SNP markers and lower genetic diversity (Ne 

lower than 100; Makanjuola et al., 2020). Haplotype-based genomic predictions in populations with 

increased genetic diversity, on the other hand, have not been widely explored yet, and the 

knowledge of their possible advantages is limited (Feitosa et al., 2019; Teissier et al., 2020).  

Different from intensively selected populations and pure breeds, which present low genetic 

diversity (e.g., Holstein dairy cattle), genetically diverse populations (e.g., relatively recent 

breeding programs in small ruminants and crossbred or composite populations) may have more 

alleles segregating in the haplotype blocks and greater complexity in the interactions among 

haplotype allele effects within haploblocks. Thus, we hypothesize that haplotype-based methods 

could result in more accurate and less biased GEBV prediction when compared to SNP-based 

models in populations with high genetic diversity because of their development process (e.g., 

relatively lower selection pressures, crossbreeding) and more complex haplotype structure than 

observed in populations with low genetic diversity. Simulated data is an interesting approach to 

investigate this hypothesis because the true breeding values (TBVs) are known (Morris et al., 2019; 

Oliveira et al., 2019). Therefore, we simulated sheep populations with different genetic diversity 

levels to test our hypothesis. Sheep is a good model due to the large genetic diversity in commercial 

populations, with Ne ranging from less than 50 to over 1,000 (Kijas et al., 2012; Brito et al., 2017b; 

Stachowicz et al., 2018). Hence, the main objective of this study was to evaluate the accuracy and 

bias of GEBVs in genetically diverse populations, using ssGBLUP when: 1) only individual SNPs 

are used to construct a single genomic relationship matrix (𝐆); 2) non-clustered (out of haploblocks) 

SNPs and haplotypes (fitted as pseudo-SNPs) are used to construct a single 𝐆; 3) only haplotypes 

are used to construct a single 𝐆; and 4) non-clustered SNPs and haplotypes are used to construct 

two 𝐆 matrices. We also compared the impact of different SNP panel densities and haploblock-

building methods on the performance of genomic prediction, as these factors could impact the 

accuracies and bias of genomic predictions. 

2 Materials and Methods 

The approval of Institutional Animal Care and Use Committee was not required because 

this study only used computationally simulated datasets.   

2.1 Data simulation  

2.1.1 Population structure. The simulation was performed to mimic datasets of purebred 

and composite sheep populations (Kijas et al., 2012; Prieur et al., 2017; Brito et al., 2017a; Oliveira 

et al., 2020). The QMSim software (Sargolzaei and Schenkel, 2009) was used to simulate a 



20 

 

 

historical population initially with 80,000 individuals (40,000 males and 40,000 females). Then, a 

population bottleneck was simulated, reaching 50,000 individuals (25,000 males and 25,000 

females) in the 1,000th generation. After that, there was an increase in the population to 60,000 

individuals, with 20,000 males and 40,000 females in the 1,500th generation. There was random 

mating in the historical population, with gametes randomly sampled from the pool of males and 

females present in each generation. Mutation and genetic drift were considered in the historical 

population to create the initial LD. The complete simulation design is summarized in Figure 1. 

 
Figure 1. Simulation design to obtain pure and composite sheep populations. 

Five random samples from the last historical population were selected to create five pure 

breeds, called A, B, C, D, and E (Figure 1). The combination of different founder population sizes 

(2,480 animals for the breeds A and B, 12,480 for the breed C, and 41,600 for the breeds D and E) 

and generations of phenotypic selection (10 for the breeds A and B, and one generation for the 

breeds C, D, and E) were used to achieve different LD patterns and, consequently, different Ne  in 

the most recent populations. There were random matings and exponential increase in the number 

of females in a rate of 0.10 for the breeds A and B and 0.15 for the breeds C, D, and E. During the 

generations of phenotypic selection, it can be considered that the breeds were separated 

geographically, restricting the mating within each population. Subsequently, the pure breeds were 

divergently selected based on estimated breeding values (EBVs) predicted using BLUP, with breeds 

A, C, and D selected for increasing and breeds B and E for decreasing the EBVs for the simulated 

trait. All breeds were selected based on the EBVs during 10 generations. The male/female ratio in 

the EBV-selected populations was 1/25, with a replacement rate of 40% for males and 20% for 

females. There were single, double, and triple births, with the odds of 30%, 50%, and 20%, 

respectively, to be similar with the ones observed in sheep flocks. The number of individuals in 
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each generation of EBV-based selection were tested and at the end were greater than 7,000 to allow 

a reasonable number of selection candidates in each generation. 

Crosses were made to obtain composite breeds, which had two or three pure breeds as the 

starting point (Figure 1). Two composite populations were created based on either two breeds 

(Comp_2), which had 62.5% of breed D and 37.5% of breed E (Figure 1), or three breeds (Comp_3), 

which had 37.5% of breed A, 37.5% of breed B, and 25.0% of breed C (Figure 1). Random mating 

was restricted within each crossbreed population for five generations. According to Rasali et al. 

(2006), five-to-six generations are sufficient to stabilize the frequencies of linked genes in new 

populations. Thereafter, the composite breeds were divergently selected using EBVs for the next 

10 generations, with Comp_2 and Comp_3 divergently selected for decreasing and increasing 

performance, respectively. Mating type, sire and dam replacements, and the number of births per 

dam in the composite breeds were the same as those previously described for the pure breeds. The 

number of individuals per generation in the composite breeds (during the selection based on EBVs) 

was more than 18,000, to keep a higher Ne on those populations compared to the pure breeds. 

2.1.2 Effective population size in the recent populations. The number of generations in 

the pure breeds during the expansion of the recent populations were modified accordingly to 

achieve the LD patterns corresponding to Ne of ~100, ~250, and ~500. The Ne was calculated using 

the LD and the realized inbreeding in the recent populations for pure and composite breeds under 

EBV-based selection. With the LD approach, Ne was estimated using the formula: 𝑁𝑒𝐿𝐷 =

(4𝑐)−1{[𝐸(𝑟2)]−1 − 2}, which is a re-arrangement of the estimator 𝐸(𝑟2) = (4𝑁𝑒𝑐 + 2)−1 

proposed by Sved (1971),  where 𝐸(𝑟2) is the expected LD for a population with effective size Ne, 

𝑐 is the genetic distance (chromosome segment size in Morgans—M) within autosomal 

chromosomes. It was considered that one Mb corresponds to a centimorgan (cM) when calculating 

the 𝑐 value, as this is an acceptable approximation in sheep (Prieur et al., 2017). Lastly, populations 

were simulated to have an LD of approximately 0.024, 0.010, and 0.005 for SNPs spaced apart by 

10 Mb, which correspond to the values of 𝐸(𝑟2) for Ne = 100, 250, and 500, respectively. A 10 Mb 

distance corresponds to an Ne that existed five generations ago (considered as current Ne), based 

on the relationship 𝑡 = 1/2𝑐 proposed by Hayes et al. (2003), where 𝑡 is the number of generations 

ago and 𝑐 is as previously defined. Estimation of LD was performed considering only SNPs with 

MAF higher than 0.05 using the 𝑟2 metric (Hill and Robertson, 1968). We also estimated the Ne 

based on the realized inbreeding five generations ago using the formula (Falconer and Mackay, 

1996): 𝑁𝑒𝐼𝑛𝑏 = 1/2∆𝐹, where ∆𝐹 = (𝐹𝑛 − 𝐹𝑛−1)/(1 − 𝐹𝑛−1) and 𝐹𝑛 is the average inbreeding in 

the nth generation. The average inbreeding per generation was obtained from the QMSim software 

outputs (Sargolzaei and Schenkel, 2009). 
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2.1.3 Simulated traits. We simulated two traits with initial heritability levels of 0.30 and 

0.10 (global parameters for the QMSim software; Sargolzaei and Schenkel, 2009), to represent 

moderate (MH2) and low (LH2) additive genetic effects, respectively, affecting the total phenotypic 

variability of the trait. The phenotypic variance was set to 100 in both simulations. The heritability 

was estimated in the recent populations based on pedigree and phenotype information using the 

AIREMLf90 software (Misztal et al., 2018) to verify if the desired values were achieved. All 

simulations were replicated five times using different seed values in order to simulate different 

populations. Only additive genetic effects were simulated due to the QMSim software (Sargolzaei 

and Schenkel, 2009) capabilities. 

2.1.4 Genome and data editing. The genome was simulated with 26 autosomal 

chromosomes with size varying between 43 and 301 cM (a total of 2,656 cM), mimicking the sheep 

genome (Supplementary File 1). The number and size of chromosomes were defined based on 

information obtained from the most recent sheep reference genome (assembly OAR_v4.0) available 

in the NCBI platform (www.ncbi.nlm.nih.gov/genome?term=ovis%20aries). The genome 

simulation was also performed using the QMSim software (Sargolzaei and Schenkel, 2009). 

A total of 3,057 QTLs were simulated, spanning the whole autosomal genome. The number 

of QTLs per chromosome varied between 51 and 391 (Supplementary File 1), which was chosen 

based on the information published in the AnimalQTLdb (AnimalQTLdb, 2019). QTLs with the 

number of alleles varying from two to six were simulated to evaluate the advantages of using 

haplotype-based approaches. All simulated markers were bi-allelic to mimic SNP markers, and the 

total number of SNPs was set to 576,595 (Supplementary File 1; similar number of autosomal SNPs 

included in the Ovine Infinium® HD SNP Beadchip 600K; FarmIQ, 2013; Kijas et al., 2014) 

sampled from the segregating loci (MAF ≥ 0.05) in the last historical generation. The information 

on the number of markers in each chromosome was obtained from the SNPchiMp v.3 platform 

(Nicolazzi et al., 2015). Both QTL and markers were randomly distributed within chromosome and 

placed in different chromosomic positions, i.e., simulated QTLs were not among the SNPs, so that 

the genomic predictions rely only on the LD between them. 

The additive genetic effects of the QTL were sampled from a gamma distribution with the 

shape parameter equal to 0.4, whereas no effects were simulated for the SNP markers. The initial 

allele frequencies assumed for QTL and markers (generation 0 of the historical population) were 

0.5. The QTL heritability on the MH2 and LH2 traits was equal to 50% and 10% of the trait 

heritability, i.e., 0.15 and 0.01, respectively. The remaining genetic variance not explained by the 

QTLs was attributed to the polygenic effect. Recurrent mutation rates on the order of 1 × 10-4 were 

https://wbww.ncbi.nlm.nih.gov/genome?term=ovis%20aries
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simulated for the QTL and markers. Rates of 0.05 and 0.01 were used for the occurrence of missing 

genotypes and genotyping errors, respectively. 

Quality control (QC) was performed in the genotype file of each simulated recent population 

for each replicate, using the PREGSf90 software from the BLUPf90 family programs (Misztal et 

al., 2018). In this step, SNPs with no extreme departure from Hardy–Weinberg equilibrium 

(difference between observed and expected frequency of heterozygous less than 0.15) and MAF ≥ 

0.01 were maintained. All SNPs passed this QC for all populations, indicating that there was enough 

variability on the simulated SNP chip panel. 

2.2 Haplotype blocks construction  

The FImpute v.3.0 software (Sargolzaei et al., 2014) was used to phase the genotypes (i.e., 

to infer SNP allele inheritance). Subsequently, the haploblocks were constructed using different LD 

thresholds (variable haploblock sizes), as described below. The 𝑟2 metric (Hill and Robertson, 

1968) was used to calculate the LD between markers to construct the haploblocks, as this measure 

is less sensitive to allele frequency (Bohmanova et al., 2010). The “gpart” package (Kim et al., 

2019) implemented in the R software (R Core Team, 2020) was used to build the haploblocks 

considering 𝑟2 levels of 0.1 (low), 0.3 (moderate), and 0.6 (high) based on the Big-LD approach 

(Kim et al., 2018). Following the previous definition of haploblocks (Gabriel et al., 2002), a 

haploblock in this study was considered as a genomic region spanning at least two SNPs.  

2.3 Prediction of GEBV 

All genomic predictions were performed using the ssGBLUP method implemented in the 

BLUPf90 family programs (Misztal et al., 2018). Before using the BLUPf90 software, the 

AIREMLf90 software (Misztal et al., 2018) was used to estimate the variance components for each 

simulation replicate for the models described in the next sections.  

2.3.1 ssGBLUP using SNPs. The model used to predict the GEBVs under this approach 

was: 

𝐲 = 𝐗𝐛 + 𝐙𝐮 + 𝐞, 

where 𝐲 is an N × 1 vector of phenotypes for genotyped and non-genotyped animals, 𝐛 is the vector 

of fixed effects (i.e., generation), 𝐮 is a random vector of GEBVs for genotyped and non-genotyped 

animals with 𝐮 ~𝑁(0,𝐇𝜎𝑔
2), 𝐞 is the vector of random errors with 𝐞 ~𝑁(0, 𝐈𝜎𝑒

2), 𝐗 is the incidence 

matrix of fixed effects, and 𝐙 is the incidence matrix that relates the records to GEBVs. In the case 



24 

 

 

of ssGBLUP fitting individual SNPs, the 𝐇 matrix is a hybrid relationship matrix that combines the 

genomic and pedigree relationships (Legarra et al., 2009), and its inverse can be computed directly 

in the mixed model equations as follows (Aguilar et al., 2010): 

𝐇−𝟏 = 𝐀−1 + [
0 0
0 𝜏(𝛼𝐆 + 𝛽𝐀𝟐𝟐)

−𝟏 − 𝜔𝐀𝟐𝟐
−𝟏], 

where 𝐀−1 is the inverse of pedigree relationship matrix, 𝐀𝟐𝟐
−𝟏 is the inverse of pedigree relationship 

matrix for the genotyped animals, and  𝐆 is the genomic relationship matrix. The 𝐆 matrix was 

constructed as in the first method proposed by VanRaden (2008): 

𝐆 =
𝐌𝐌′

2∑𝑝𝑖(1−𝑝𝑖)
, 

where 𝐌 is the matrix of centered genotypes, with a dimension equal to the number of animals by 

the number of markers. The blending and weighting parameters for the genomic information were 

the default values in the PREGSf90 software (𝛼 and 𝛽 equal to 0.95 and 0.05, respectively, and 𝜏 

and 𝜔 equal to 1.0; Misztal et al., 2018). 

2.3.2 ssGBLUP using SNPs and haplotypes combined in a single genomic relationship 

matrix. The model and assumptions in this approach are the same as described in section 2.3.1. 

However, the 𝐆 matrix used to construct the combined relationship in this model had both 

independent markers (i.e., non-blocked markers, which are SNPs out of the LD blocks) and 

haplotypes as pseudo-SNPs. To build the 𝐆 matrix using haplotype information, the haplotype 

alleles were first converted to pseudo-SNPs, as in Teissier et al. (2020). Using this approach, if 

there were five unique haplotype alleles in a haploblock, five pseudo-SNPs were created for this 

haploblock. At the end, the number of copies of a specific pseudo-SNP allele were counted and 

coded as 0, 1, or 2 for each individual, similar to the codes used in 𝐌 (when creating the 𝐆) as 

previously described based on individual SNPs. The pseudo-SNPs were subjected to the same QC 

steps as described above for individual SNPs. 

2.3.3 ssGBLUP using haplotypes.  The model and assumptions in this approach were the 

same as described in section 2.3.1. However, only haplotypes converted to pseudo-SNPs were used 

to create the 𝐆 matrix used in the predictions, therefore, excluding non-blocked individual SNPs. 

2.3.4 ssGBLUP using SNPs and haplotypes assigned to two different genomic 

relationship matrices. The model used for these analyses was: 

𝐲 = 𝐗𝐛 + 𝐙𝐮𝟏 +  𝐙𝐮𝟐 + 𝐞, 
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where 𝐮𝟏 and 𝐮𝟐 are the random additive genetic effects of the first and second component of the 

overall GEBV, respectively, which, under this modeling, is equal to 𝐮𝟏 + 𝐮𝟐. All other vectors and 

matrices on this model are the same as described on the previous sections. The main assumption on 

this model is that the breeding value is divided into two uncorrelated components with their own 

covariance structure, being 𝐮𝟏~𝑁(0,𝐇𝟏𝜎𝑔1
2 ) and 𝐮𝟐~𝑁(0,𝐇𝟐𝜎𝑔2

2 ), in which 𝐇𝟏 and 𝐇𝟐 are the 

hybrid relationship matrices with the same structure of the 𝐇 matrix described before. The only 

difference between 𝐇𝟏 and 𝐇𝟐is the 𝐆 matrix that is combined with the pedigree relationship in 

each one of them, named as 𝐆𝟏 and 𝐆𝟐, respectively, containing the genomic relationships between 

the individuals based on single non-blocked SNPs and haplotypes, respectively. This 

parametrization was used to account for the fact that haplotypes and, therefore, the corresponding 

pseudo-SNPs, are more polymorphic than individual SNPs. Consequently, pseudo-SNPs could 

better capture the effect of large-sized QTL with lower allele frequency than individual SNPs and 

could have different distribution of their allele effects compared to individual SNPs. 

2.4 Training and validation population sets 

The populations used in the genomic predictions were the pure breeds B, C, and E, defined 

as Breed_B, Breed_C, and Breed_E, respectively, and composite breeds Comp_2 and Comp_3. 

Only breeds Breed_B, Breed_C, and Breed_E were presented here because the genetic background 

simulated, i.e., the size of the founder population and generations of selection, was more divergent 

for these populations (Figure 1). As breeds A and D had similar sizes of the founder populations 

and generations of selection when compared to breeds B and E, respectively, we observed similar 

results between breeds A and B and also D and E (data not shown).  

The datasets (populations from the simulated EBV-based selection programs) were divided 

into training and validation sets to test the accuracy and bias of GEBVs. The training sets within 

each population were composed of 60,000 individuals with phenotypes randomly sampled from 

generations one to eight, and 8,000 of them also had genotypes for the simulated HD panel. The 

genotyped individuals in the training set were randomly sampled from generations four to seven. 

The validation populations were composed of 2,000 individuals randomly sampled from 

generations nine and ten and were also genotyped for the same panel. Generation eight was 

considered as a gap between training and validation populations in terms of genotypes. The whole 

pedigree (generations 1 to 10) was used in all analyses. As we assume that validation individuals 

would not have phenotypes, their GEBVs were estimated based on the relationships of the 

validation cohort with the training set (with phenotypes and genotypes included in the analyses).  
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2.5 Evaluated scenarios 

Although the HD SNP panel datasets were first simulated, the main genomic predictions 

were performed using a medium density 50K SNP panel, which was designed based on randomly 

selected SNPs from the original HD panel. This step was performed because similar accuracies tend 

to be achieved when using a medium density SNP panel in sheep (Moghaddar et al., 2017), as well 

as in other species (Binsbergen et al., 2015; Ni et al., 2017; Frischknecht et al., 2018). The total 

number of SNPs selected for the 50K panel was 46,827, as currently available in the 50K SNP panel 

(for autosomal chromosomes) reported in the SNPchiMp v.3 platform (Nicolazzi et al., 2015). The 

markers in the 50K SNP panel were randomly sampled within each autosome, and the number of 

SNPs per chromosome is reported in Supplementary File 1. In addition, previous analyses showed 

that both SNP and haplotype-based predictions based on the HD and 50K SNP panels were not 

statistically different (data not shown). Therefore, the haplotype blocks for all the prediction 

scenarios were created based on the 50K panel and the results for the HD SNP panel were presented 

as an additional scenario. 

At the end, 11 scenarios were evaluated, which consisted of genomic predictions using: 1) 

SNPs from the 600K; 2) SNPs from the 50K; 3 to 5) independent SNPs and pseudo-SNPs from 

haplotype blocks with LD equal to 0.1, 0.3, and 0.6 in a single relationship matrix (IPS_LD01, 

IPS_LD03, and IPS_LD06, respectively); 6 to 8) only pseudo-SNPs from haplotype blocks with 

LD equal to 0.1, 0.3, and 0.6 (PS_LD01, PS_LD03, and PS_LD06, respectively); and 9 to 11) 

independent SNPs and pseudo-SNPs from haplotype blocks with LD equal to 0.1, 0.3, and 0.6 in 

two different relationship matrices (IPS_2H_LD01, IPS_2H_LD03, and IPS_2H_LD06, 

respectively). All these scenarios were evaluated for two different heritability levels (moderate and 

low) and in each one of the five populations previously described (purebred and composite breeds 

with distinct Ne). Therefore, 110 different scenarios were evaluated in each one of the five 

replicates. A summary of the evaluated scenarios is shown in Figure 2.  

2.6 Scenario comparisons  

The statistics related to haplotype blocking strategies were compared between populations 

(pure and composite breeds) within each LD threshold to create the blocks (0.1, 0.3, and 0.6), and 

also, the LD thresholds were compared within each population to differentiate the haplotype block 

structures. These statistics are: average number of haploblocks, blocked SNPs, pseudo-SNPs before 

and after QC, non-blocked plus pseudo-SNPs after QC, and the additional computer time required 

by using pseudo-SNPs (e.g., SNPs phasing, haplotype blocking, pseudo-SNP derivation). The 

GEBV accuracies and bias in each prediction scenario were compared within each population, to 
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mimic population-specific (breed) genetic evaluation. Prediction accuracy was estimated as the 

Pearson correlation coefficient between the GEBVs and TBVs for the validation animals, for each 

replicate and scenario. Prediction bias was assessed as the deviation from one of the linear 

regression coefficients (𝛽1) of the TBVs on the GEBVs (i. e. , 𝑏𝑖𝑎𝑠 =  𝛽1 − 1;where 𝑇𝐵𝑉 = 𝛽0 +

𝛽1 × 𝐺𝐸𝐵𝑉) in the validation population in each replicate and scenario.  

 
Figure 2. Evaluated scenarios used in the genomic predictions with pseudo- single nucleotide 

polymorphisms (SNPs) from linkage disequilibrium (LD) blocks using independent and 

pseudo-SNPs in a single genomic relationship matrix (1H), and only pseudo-SNPs and 

independent and pseudo SNPs in two genomic relationship matrices (2H). 

A linear mixed model was used to test the effect of the population and LD level on the 

statistics from haplotype block strategies and the effect of marker information (SNP and haplotype 

prediction scenarios) on the accuracy and bias of GEBV prediction. The statistical model used was:  

𝑦𝑖𝑗 = 𝜇 + 𝑇𝑖 + 𝑅𝑗 + 𝜀𝑖𝑗 

where 𝑦𝑖𝑗 is the observation of the ith treatment on the jth repetition; 𝑇𝑖 is the treatment effect, in 

which i is equal to Breed_B, Breed_C, Breed_E, Comp_2, and Comp_3 to compare  the population 

effect over the statistics from haplotype block strategies within each LD threshold; equal to LD01, 

LD03, and LD06 to compare the effects of LD level over the statistics from haplotype block 

strategies within population; and equal to 600K, 50K, IPS_LD01, IPS_LD03, IPS_LD06, 

PS_LD01, PS_LD03, PS_LD06, IPS_2H_LD01, IPS_2H_LD03, and IPS_2H_LD06 to test the 

effect of marker information over the accuracy and bias of GEBV prediction within each 

population; 𝑅𝑗 is the random effect of replicates which was assumed to follow ~𝑁(0, 𝐁𝜎𝑏
2); and 𝜀𝑖𝑗 

is the residual effect of the model. 

Replicate was used as a random effect in the model to account for the covariance between 

the scenarios, as the compared averages were obtained within the simulated populations in each 

replicate. This was done to reduce the occurrence of false negatives (Type-II error). Different 
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covariance structures (𝐁) were evaluated (spherical, compound symmetry, simple autoregressive 

process, and unstructured covariance) to explain the covariances between replicates, and the 

structure that presented the lowest Akaike information criterion (AIC) and Bayesian information 

criterion (BIC) values was used in the final models for comparison purposes. After defining the 

appropriate covariance structure (which was not the same for all scenarios, with unstructured 

covariance being the best in the major part of the scenarios), the means of the 𝑇𝑖 levels were 

compared using the Tukey test at 5% of significance level. The “nlme” (Pinheiro et al., 2021) and 

“emmeans” (Lenth, 2021) R packages were used to fit the models and compare the means, 

respectively, in the R environment (R Core Team, 2020). 

3 Results 

3.1 Genetic diversity and genetic parameters in the simulated populations.  

After the simulation process, several different Ne levels were observed in the recent 

populations studied (generations 1 to 10 of pure and composite breeds under EBV-based selection). 

The total additive genetic effect variances estimated with the models that used two 𝐇 matrices 

(section 2.3.4), taken as 𝜎𝑔1
2 + 𝜎𝑔2

2 , and the residual variances were similar to the variances 

estimated with the models that fitted a single 𝐇 matrix (sections 2.3.1, 2.3.2, and 2.3.3) and similar 

to the variances estimated with the model that used only the pedigree relationship matrix (section 

2.1.3; Supplementary Files 3 and 4). Therefore, for simplicity, only the genetic parameters 

estimated based on the pedigree relationship matrix are presented in Table 1. A population structure 

analysis based on principal components (PCs) of the 𝐆 matrix using the SNPs from the 50K panel 

was also performed (Supplementary File 2). Individuals within the population were close to each 

other, and no clear clusters between populations existed at 95% confidence level based in the 

approximated unbiased test from a hierarchical clustering method using 10,000 bootstrap samples 

(Shimodaira, 2002; Supplementary File 2). 

3.1.1 Ne and genetic parameters for the simulation of a trait with moderate 

heritability. The average NeLD ranged between 110 and 644 (Breed_B and Comp_2, respectively), 

while the NeInb varied from 159 to 373 (Breed_B and composite breeds, respectively), being lower 

in pure breeds independently of the Ne measure (Table 1 and Supplementary File 3). The average 

additive genetic variance in the MH2 scenarios ranged from 25.82 (Comp_2) to 28.09 (Breed_C), 

while the residual variances ranged from 70.85 (Breed_C) to 73.07 (Comp_2). Average heritability 

estimates ranging from 0.26 (Comp_2) to 0.29 (Breed_C) were observed across populations, which 
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are close to the global simulation parameters (heritability and phenotypic variance equal to 0.30 

and 100, respectively).  

Table 1. Average (SE) effective population size based on the linkage disequilibrium (NeLD) and 

realized inbreeding (NeInb) methods, additive genetic variance (𝜎𝑎
2), residual variance (𝜎𝑎

2), and 

heritability (h2) estimates of the trait in simulated sheep populations. 

Simulation Population1 NeLD
2 NeInb

3 𝝈𝒂
𝟐 𝝈𝒆

𝟐 h2 

Moderate 

h2 (0.30) 

Breed_B 110 (6) 190 (17) 27.12 (0.27) 71.54 (0.10) 0.27 (0.00) 

Breed_C 379 (8) 260 (15) 28.09 (0.25) 70.85 (0.26) 0.29 (0.00) 

Breed_E 359 (5) 192 (6) 27.45 (0.35) 72.42 (0.34) 0.28 (0.00) 

Comp_2 644 (15) 446 (7) 25.82 (0.37) 73.07 (0.25) 0.26 (0.00) 

Comp_3 466 (40) 447 (53) 26.80 (0.62) 72.88 (0.50) 0.27 (0.00) 

Moderate 

h2 (0.10) 

Breed_B 125 (8) 94 (11) 9.17 (0.26) 90.30 (0.38) 0.09 (0.00) 

Breed_C 272 (11) 120 (11) 9.31(0.28) 89.91(0.23) 0.09 (0.00) 

Breed_E 251 (22) 119 (19) 9.31 (0.23) 90.38 (0.26) 0.09 (0.00) 

Comp_2 522 (32) 259 (40) 8.42 (0.27) 91.13 (0.27) 0.08 (0.00) 

Comp_3 407 (32) 235 (38) 8.00 (0.29) 91.90 (0.23) 0.08 (0.00) 
1Breed_B, Breed_C, and Breed_E: simulated pure breeds with different genetic backgrounds; 

Comp_2 and Comp_3: composite breeds based on two and three pure breeds, respectively. 
2Estimated based on the re-arranged estimator present in Sved (1971). 
3Estimated based on the formula presented by Falconer and Mackay (1996). 

3.1.2 Ne and genetic parameters for the simulation of a low heritability trait. The 

average NeLD ranged from 125 (Breed_B) to 522 (Comp_2), while NeInb ranged between 94 and 

259 for these same populations (Table 1 and Supplementary File 4). Average additive genetic 

variances ranging from 8.00 (Comp_3) to 9.31 (Breed_C and Breed_E) were observed. The average 

residual variances ranged from 90.30 (Breed_B) to 91.90 (Comp_3). In the LH2 scenarios, the 

average heritabilities were equal to 0.09 in the pure breeds and 0.08 in the composite breeds, which 

are close to the global simulation parameters (heritability and phenotypic variance equal to 0.10 

and 100, respectively). 

3.2 Statistics from haplotype blocks and pseudo-SNPs: moderate heritability trait 

3.2.1 Number of blocks. The average number of blocks with two or more SNPs and the 

LD threshold equal to 0.1 ranged from 7,709.6 (Comp_2) to 8,607.6 (Comp_3), with Comp_2 and 

Breed_B showing similar and significantly lower number of blocks with this LD threshold level 

than the other populations (Figure 3A and Supplementary File 5). With the LD threshold equal to 

0.3, the average number of blocks ranged from 145.0 (Comp_2) to 3,574.6 (Breed_B), and Breed_B 

showed significantly larger mean compared to the other populations (Figure 3B and Supplementary 

File 5). Only Breed_B had blocks with an LD threshold equal to 0.6, with an average equal to 23.8, 

which was statistically different from all the other populations (Figure 3C and Supplementary File 

5). Within each population, the mean number of blocks from LD threshold levels of 0.1, 0.3, and 
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0.6 were statistically different for all populations, with the LD threshold equal to 0.1 being the 

largest, followed by the LD threshold equal to 0.3, and the 0.6 level yielding the lowest number of 

blocks. 

3.2.2 Number of blocked SNPs. The average number of blocked SNPs for the LD threshold 

equal to 0.1 varied between 17,122.2 (Comp_2) and 19,199.8 (Comp_3) (Figure 3A and 

Supplementary File 5), and for Comp_2, it was significantly lower than all the other populations. 

The average number of SNPs within blocks with an LD threshold equal to 0.3 ranged from 340.4 

(Comp_2) to 8,195.4 (Breed_B) (Figure 3B and Supplementary File 5). The number of blocked 

SNPs for Breed_B was significantly higher than for the other populations (which did not differ 

among them). The average number of blocked SNPs with LD threshold equal to 0.6 in Breed_B 

was 56.8 (Figure 3C and Supplementary File 5) and was significantly greater, as no blocks were 

created for all the other populations.   

3.2.3 Number of pseudo-SNPs after quality control. After QC, the average number of 

pseudo-SNPs from blocks with an LD threshold equal to 0.1 was reduced, ranging from 35,524.6 

(Comp_2) to 39,713 (Breed_E) (Figure 3A and Supplementary File 5). In general, Breed_B and 

Comp_2 were statistically similar and had lower averages compared to all other populations. The 

average number of pseudo-SNPs after QC with haploblocks constructed with the LD threshold of 

0.3 was between 718.6 (Comp_2) and 16,259.4 (Breed_B), in which only Breed_B was statistically 

different from all other populations (Figure 3B and Supplementary File 5). With an LD threshold 

equal to 0.6, the average number of pseudo-SNPs for Breed_B was 91 and no pseudo-SNPs were 

generated with this LD threshold for all the other populations (Figure 3C and Supplementary File 

5). The average number of pseudo-SNPs before QC is also shown in Figure 3A and Supplementary 

File 5. 

3.2.4 Number of non-blocked SNPs plus pseudo-SNPs after quality control. The 

average number of non-blocked plus pseudo-SNPs after QC varied from 64,987.0 (Breed_B) to 

67,367.2 (Breed_E) when using blocks with an LD threshold of 0.1 (Figure 3A and Supplementary 

File 5). Breed_B and Comp_2 showed lower averages compared to all the other populations. 

Regarding the LD threshold of 0.3, the number of non-blocked plus pseudo-SNPs after QC ranged 

from 47,205.2 (Comp_2) to 54,891.0 (Breed_B) (Figure 3B and Supplementary File 5). For this 

LD threshold, the Breed_B average was statistically greater than all the other populations. The 

average number of non-blocked plus pseudo-SNPs after QC was equal to 46,867.8 for Breed_B and 

46,827 for all the other populations when using an LD threshold of 0.6 to create the haploblocks 

(Figure 3C and Supplementary File 5).    
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3.2.5 Additional time to create pseudo-SNPs. The average computing time to create the 

pseudo-SNPs (also considering the haplotype phasing and blocking) was between 8,800.6 s (2 h 

and 26 min; Comp_2) and 22,650.0 s (6 h and 18 min; Breed_B) with the LD threshold of 0.1 

(Figure 3A and Supplementary File 5). For this LD threshold, the computing time for Breed_B was 

statistically similar to that in Breed_C, but significantly different from all the other populations. 

When using an LD threshold of 0.3 to create the blocks, the average computing time ranged from 

675.4 s (11 min; Comp_2) to 2,935.0 s (49 min; Breed_B) (Figure 3B and Supplementary File 5). 

The computing time for Breed_B was statistically higher than all the other populations, which were 

not statistically different among them. The average computing time for pseudo-SNPs from blocks 

with an LD threshold equal to 0.6 ranged from 591.4 (10 min) to 666.8 s (11 min) (Breed_C and 

Breed_B, respectively; Figure 3C and Supplementary File 5), and no statistical differences were 

observed across populations. The computing time compared across LD thresholds within the 

population showed that LD thresholds of 0.3 and 0.6 were statistically similar and lower than with 

the LD threshold of 0.1. 

 
Figure 3. Average number of blocks (Blocks) spanning two or more SNPs, markers within 

blocks (Blocked_SNPs), pseudo-SNPs (Pseudo_SNPs), pseudo-SNPs after quality control 

(PS_A_QC), non-blocked SNPs plus pseudo-SNPs after quality control (NB_PS_A_QC), and 

computing time to obtain the pseudo-SNPs (Duration_time) in the simulation for a trait with 

moderate heritability (h2 = 0.30). A, B, and C show the results for haplotype blocks with LD 

thresholds of 0.1, 0.3, and 0.6, respectively. Breed_B, Breed_C, and Breed_E: simulated pure 

breeds with different genetic backgrounds; Comp_2 and Comp_3: composite breeds from 

two and three pure breeds, respectively. The same lower- or upper-case letters mean no 
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statistical difference comparing populations within LD thresholds and LD threshold across 

populations, respectively, at 5% significance level by the Tukey test. 

3.3 Statistics from haplotype blocks and pseudo SNPs: low heritability trait 

We have also checked the statistics from haplotype blocks and pseudo-SNPs in the low 

heritability trait scenarios because the simulation was done for each heritability level at a time. In 

general, the number of blocks, blocked SNPs, pseudo-SNPs before and after the QC, the number 

of non-blocked plus pseudo-SNPs after QC, and computing time to generate the pseudo-SNPs for 

a trait with a low heritability were similar to those for a trait with moderate heritability and are 

shown in Figure 4 and Supplementary File 6. The results for the statistical comparisons in each one 

of these metrics for both populations, within each LD threshold, and for LD thresholds across 

populations were also similar between the LH2 and MH2 scenarios. The exceptions for the 

statistical comparisons under LH2 scenario was that the number of blocks in Breed_C and Breed_E 

would show a similar or lower average number of blocks, blocked SNPs, pseudo-SNPs after QC, 

and number of non-blocked plus pseudo-SNPs after QC than Breed_B, whereas the opposite would 

occur under the MH2 scenario. However, as pointed out before, the values were similar across the 

LH2 and MH2 scenarios. Therefore, the interpretation of the statistical comparisons for haplotype 

blocks in the MH2 scenario are also extended to LH2.    

 
Figure 4. Average number of blocks (Blocks) spanning two or more SNPs, markers within 

blocks (Blocked_SNPs), pseudo-SNPs (Pseudo_SNPs), pseudo-SNPs after quality control 

(PS_A_QC), non-blocked SNPs plus pseudo-SNPs after quality control (NB_PS_A_QC), and 

computing time to obtain the pseudo-SNPs (Duration_time) in the simulation for a trait with 
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low heritability (h2 = 0.10). A, B, and C show the results for the haplotype blocks with LD 

thresholds of 0.1, 0.3, and 0.6, respectively. Breed_B, Breed_C, and Breed_E: simulated pure 

breeds with different genetic backgrounds; Comp_2 and Comp_3: composite breeds from 

two and three pure breeds, respectively. The same lower- or upper-case letters mean no 

statistical difference comparing populations within LD thresholds and LD threshold across 

populations, respectively, at 5% significance level based on the Tukey test 

3.4 Accuracy and bias of genomic predictions: moderate heritability trait 

3.4.1 Pure breed with lower genetic diversity (Breed_B). The average accuracy for 

GEBVs based on individual SNPs in the Breed_B was 0.54 and 0.55 for the 50K and 600K panels, 

respectively, whereas it varied from 0.48 (pseudo-SNPs from blocks with an LD threshold of 0.3, 

PS_LD03) to 0.54 (independent SNPs and pseudo-SNPs from blocks with an LD threshold of 0.6, 

IPS_LD06) using haplotypes (Figure 5A, Supplementary File 7). In general, genomic predictions 

that used pseudo-SNPs and independent SNPs in one or two relationship matrices did not 

statistically differ from those with SNPs in the 50K and 600K panels. Using only pseudo-SNPs in 

the genomic predictions showed significantly lower accuracy than all other methods, when 

considering an LD threshold equal to 0.1 and 0.3 to create the blocks (PS_LD01 and PS_LD03, 

respectively). No predictions with PS_LD06 and IPS_2H_LD06 (independent SNPs and pseudo-

SNPs from blocks with an LD threshold of 0.6 in two relationship matrices) were performed due to 

the low correlations observed between off-diagonal elements in 𝐀𝟐𝟐 and 𝐆 constructed with only 

pseudo-SNPs from haploblocks with an LD threshold of 0.6 (Supplementary File 8). The average 

GEBV bias was equal to -0.09 and -0.08 for the 50K and 600K SNP panels, respectively, whereas 

it ranged between -0.20 (PS_LD03) and -0.08 (IPS_2H_LD01) with haplotypes. No statistical 

differences were observed in the average bias when the two SNP panel densities or the independent 

and pseudo-SNP in one or two relationship matrices were used. PS_LD01 and PS_LD03 generated 

statistically more biased GEBVs than all the other scenarios. 

3.4.2 Pure breed with medium-size founder population and moderate genetic diversity 

(Breed_C). The average accuracy observed in the Breed_C was equal to 0.53 and 0.54 with the 

50K and 600K, respectively, while with haplotypes, it ranged from 0.25 (PS_LD03) to 0.52 

(IPS_LD03) (Figure 5A, Supplementary File 7). Similar to Breed_B, the PS_LD01 and PS_LD03 

models yielded statistically less accurate GEBVs than all the other models, with PS_LD03 being 

the worst one. Fitting pseudo-SNPs and independent SNPs in one or two relationship matrices did 

not have statistical differences when compared with individual-SNP predictions. The 

IPS_2H_LD03 scenario did not converge during the genetic parameter estimation, and no pseudo-

SNPs were generated for any haplotype method that used an LD threshold of 0.6 (IPS_LD06, 

PS_LD06, and IPS_2H_LD06). Consequently, no results were obtained for these scenarios. 
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Average GEBV bias equal to -0.05 and -0.02 were observed for the 50K and 600K SNP panels, 

whereas in the haplotype-based predictions, it ranged from -0.49 (PS_LD03) to -0.03 

(IPS_2H_LD01). PS_LD01 and PS_LD03 were statistically more biased than all the other scenarios 

(statistically similar among them). 

3.4.3 Pure breed with larger founder population and moderate genetic diversity 

(Breed_E). The average accuracy was equal to 0.52 and 0.53 for the 50K and 600K SNP panel, 

respectively, while the haplotype-based approach yielded accuracy varying between 0.28 

(PS_LD03) and 0.51 (IPS_LD03) in Breed_E (Figure 5A, Supplementary File 7). Using only 

pseudo-SNPs from haplotype blocks with an LD threshold of 0.3 (PSLD03) yielded the less 

accurate genomic predictions, being statistically lower than all the other models (with similar 

accuracy among them). No blocks with an LD threshold equal to 0.6 were created in this population, 

and therefore, no predictions were obtained with the models that would use pseudo-SNPs from 

these blocks. For the GEBV bias, averages of -0.09 and -0.06 were observed for the 50K and 600K 

panels, respectively, ranging from -0.53 (PS_LD03) to -0.09 (IPS_2H_LD01) when haplotypes 

were fitted. Similar to the accuracy findings, the PSLD03 showed statistically lower average GEBV 

bias of prediction compared to all other models, showing the more biased predictions. 

3.4.4 Composite breed from two populations with high genetic diversity (Comp_2). The 

average accuracy for the 50K and 600K SNP panels in Comp_2 were 0.41 and 0.42, respectively, 

with haplotype-based predictions ranging from 0.17 (PSLD03) to 0.41 (IPS_LD03) (Figure 5A, 

Supplementary File 7). As observed in the pure breeds, there were no statistical differences between 

the predictions with SNPs based on both SNP density panels and the scenarios that fitted pseudo-

SNPs and independent SNPs in one or two relationship matrices. Using only pseudo-SNPs to create 

the 𝐆 matrix also provided statistically lower accuracy, with PS_LD03 yielding the worst results. 

No predictions were made with IPS_2H_LD03 in this population because of convergence problems 

during the genetic parameter estimation process. No pseudo-SNPs were obtained with the LD 

threshold of 0.6 and, consequently, no subsequent genomic prediction results. Average GEBV bias 

of -0.14 and -0.10 was observed for the 50K and 600K SNP panels, respectively, while the average 

GEBV bias ranged from -0.62 (PS_LD03) to -0.15 (IPS_2H_LD01) when fitting haplotypes. 

Statistically, more biased predictions were obtained only when pseudo-SNPs from haplotype blocks 

with an LD threshold of 0.3 were used (PS_LD03).  
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 Figure 5. Accuracies and bias of genomic predictions based on individual SNPs and haplotypes for the simulations of traits with moderate (A) 

and low (B) heritability (0.30 and 0.10, respectively). Breed_B, Breed_C, and Breed_E: simulated pure breeds with different genetic backgrounds; 

Comp_2 and Comp_3: composite breeds from two and three pure breeds, respectively. 600K: high-density panel; 50K: medium-density panel; 

IPS_LD01, IPS_LD03, and IPS_LD06: independent and pseudo-SNPs from blocks with LD thresholds of 0.1, 0.3, and 0.6, respectively, in a single 

genomic relationship matrix; PS_LD01, PS_LD03, and PS_LD06:  only pseudo-SNPs from blocks with LD threshold of 0.1, 0.3, and 0.6, 

respectively; and  IPS_2H_LD01, IPS_2H_LD03, and IPS_2H_LD06: independent and pseudo-SNPs from blocks with LD thresholds of 0.1, 0.3, 

and 0.6, respectively, in two genomic relationship matrices. Zero values for both accuracies and bias mean no results were obtained, due to poor 

quality of genomic information or no convergence of the genomic prediction models. The same lower-case letters mean no statistical difference 

comparing genomic prediction methods within population at 5% significance level based on the Tukey test 
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3.4.5 Composite breed from three populations with high genetic diversity 

(Comp_3). The average accuracy for the 50K and 600K SNP panels were 0.41 and 0,42, 

respectively, and with haplotype-based predictions, they ranged from 0.22 (PS_LD03) to 

0.41 (IPS_LD03) (Figure5A, Supplementary File 7). The PS_LD01 and PS_LD03 

scenarios yielded statistically lower accuracy than all the other methods (statistically 

similar among them). Similarly to Comp_2, no genomic predictions were performed for 

the IPS_2H_LD03 and models fitting pseudo-SNPs from blocks with an LD threshold of 

0.6. The average GEBV bias was -0.19 and -0.14 for the 50K and 600K SNP panels, 

respectively, and ranged from -0.60 (PS_LD03) to -0.18 (IPS_LD01) for the haplotype-

based predictions. Using only pseudo-SNPs from LD blocks constructed based on an LD 

threshold of 0.3 resulted in more biased GEBV predictions for the Comp_3 population. 

3.5 Accuracy and bias of genomic predictions: low heritability trait 

The effects of fitting haplotypes in the genomic predictions under the LH2 

scenarios were similar to those observed in the MH2 scenarios for all populations, with 

also similar average results (Figure 5B and Supplementary File 9). Therefore, the 

interpretations of the results for MH2 can be extended to the LH2 scenario, in which the 

worst results were observed for the PS_LD03 and similar accuracy and bias using SNPs 

or haplotypes (with independent SNPs) were observed. The GEBVs from the LH2 

scenarios were less accurate and more biased than those from the MH2 scenarios within 

populations (e.g., lower accuracy and greater bias in LH2 within Breed_B), as would be 

expected due to the lower heritability of the trait. No GEBV predictions were made for 

the PS_LD06 and IPS_2H_LD06 for Breed_B due to the low correlation between the off-

diagonal elements of the 𝐀𝟐𝟐 and 𝐆 created with pseudo-SNPs from blocks with an LD 

threshold of 0.6 (Supplementary File 10). No results for all scenarios fitting pseudo-SNPs 

from blocks with an LD threshold of 0.6 were obtained for Breed_C, Breed_E, Comp_2, 

and Comp_3 because no blocks were created based on this threshold. 

4. Discussion 

We hypothesized that the predicted GEBV in populations with higher genetic 

diversity, such as composite sheep breeds (e.g., Kijas et al., 2012; Brito et al., 2017b; 

Oliveira et al., 2020), could benefit from the use of haplotype-based rather than SNP-

based genomic predictions, by obtaining GEBVs with higher accuracy and lower bias of 
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prediction. Therefore, we investigated the impact of including haplotype information in 

ssGBLUP for populations with high genetic diversity, assessed based on the Ne metric, 

and different genetic background. Furthermore, we evaluated the performance of 

haplotype-based models by fitting the haplotypes as pseudo-SNPs in different ways under 

the ssGBLUP framework. For that, we considered only pseudo-SNPs to construct the 

genomic relationships and also two different relationship matrices (i.e., derived from 

individual SNPs and pseudo-SNPs from haplotype blocks), assuming no correlation 

between them. To evaluate our hypothesis, simulated data was used to calculate the true 

accuracy and bias of genomic predictions for simulated traits with moderate and low 

heritability level. These two sets of heritability levels comprise the major part of traits of 

interest in livestock breeding programs (e.g., growth, carcass, feed efficiency, 

reproductive performance, disease resistance, overall resilience). 

4.1 Genetic diversity and genetic parameters 

The genetic diversity and variance components were assessed in the subsets of the 

data used for the predictions to verify the consistency of the initial simulation parameters. 

In addition to the first three recent Ne idealized at the beginning of this study (100, 250, 

and 500), several other genetic diversity measures were obtained after the simulation 

process was finalized, which are measures of recent Ne (until five generations ago) based 

on LD (NeLD) and on realized inbreeding (NeInb) (Table 1 and Supplementary Files 3 and 

4). NeLD would be more useful in the absence of accurate pedigree information, as it relies 

on the 𝐸(𝑟2) estimation in a pre-defined chromosomic segment size and was proposed 

for simpler population structures (e.g., random mating and no selection; Sved, 1971). 

However, we also calculated NeInb as an alternative indicator of Ne, because this estimate 

is based on the realized inbreeding and relies on the actual increase in population 

autozygosity (Falconer and Mackay, 1996).  

One thousand and six hundred individuals from each one of the five populations 

(8,000 in total) were used to obtain the principal components (PCs) shown in 

Supplementary File 2, which actually explained a small proportion of the overall variance 

(1.71% and 2.13% for the first two and first three PCs, respectively). MacVean (2009) 

highlighted several situations that can affect the structure and spatial distribution of the 

PCA using SNPs (e.g., current and recurrent bottlenecks, admixture, waves of expansion, 

sample size) and potentially cause bias in the scatter with the first PCs, especially if they 
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explain a little proportion of the overall variance. Rao (1964) also indicated that 

inferences about structural relationships using the first PCs are only recommended when 

they explain a substantial amount of variation, which was not our case. Also, Deniskova 

et al. (2019) found a sheep population with a lower Ne (176) more scattered in the first 

two PCs than populations with higher Ne (>500), indicating the need for a third PC to 

observe differences within the high genetically diverse, similar to what we observed in 

this current study. The authors mentioned that a small founder population could be the 

reason for the lower Ne in the more scattered population along the first two PCs, and the 

Breed_B in our study (lower Ne) also had the smallest founder population. Another 

important point to highlight is that when using commercially available SNP chips, there 

tends to be ascertainment bias in the design of the SNP panels, which then contributes to 

a greater differentiation among populations (depending if they contributed or not to the 

SNP panel design) and crossbred/composite animals tend to have greater SNP diversity 

and be more scattered in the plots. This does not tend to happen when using simulated 

datasets. In summary, as it is not recommended to make inferences with PCs that are not 

significant (Rao, 1964; MacVean, 2009), the Ne should be used to make conclusions 

about the genetic diversity of the simulated populations, with the PCs used only for the 

illustration of the population structure.        

Both Ne measures showed values close to those observed for some terminal and 

composite sheep breeds (125 to 974) as reported by Brito et al. (2017b), indicating that 

the simulation analyses resulted in datasets mimicking the genetic structure of 

commercial sheep populations. In addition to sheep, other species also present similar 

genetic diversity levels to some of the simulated populations used in this research, such 

as goats (Ne from 38 to 149; Brito et al., 2015), beef cattle (Ne from 153 to 220; 

Biegelmeyer et al., 2016), and dairy cattle (Ne from 58 to 120; Makanjuola et al., 2020). 

The genetic parameters estimated after the simulation process were similar and consistent 

among replicates across all recent populations used for the subsequent analyses in both 

scenarios (MH2 and LH2; Table 1 and Supplementary Files 3 and 4). 

 

4.2 Statistics from haplotype blocks and pseudo-SNPs 
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The differences observed on the haplotype block statistics across the simulated 

populations within LD thresholds and also across LD thresholds within populations are a 

consequence of the genetic events experienced by them. The number and size of the LD 

blocks can vary according to recombination hotspots and evolutionary events such as 

mutation, selection, migration, and random drift (McVean et al., 2004). In this context, a 

lower number of blocks with high LD thresholds would be expected in more genetically 

diverse populations, simply because in these populations, a large number of SNPs are 

expected to be excluded from all haploblocks, left to be considered as individual SNP 

effects. This was observed in Breed_B (less diverse, Ne ranging from 94 to 159) having 

a larger number of blocks not only when 0.6 was used as the LD threshold but also when 

the LD threshold was set to 0.3 in both MH2 and LH2 scenarios (Figures 3 and 4 and 

Supplementary Files 5 and 6).  

The average number of blocks was similar (LH2, Figure 4 and Supplementary File 

7) or even lower (MH2, Figure 3 and Supplementary File 6) in Breed_B compared to the 

other populations when the LD threshold was set to 0.1. The Big-LD method used in this 

study defines the LD blocks by using weights estimated based on the number of SNPs 

from all possible overlapping intervals (Kim et al., 2018). Therefore, low LD thresholds 

could imply in similar intervals to derive the independent blocks regardless of the level 

of genetic diversity in populations derived from the same historical population (i.e., same 

species). When setting low LD thresholds to construct the LD-blocks, more intervals of 

linked SNPs are obtained as the number of blocks increase with less SNPs excluded (and 

vice versa). Therefore, this might explain the distribution of the number of blocks across 

populations with an LD threshold of 0.1. Consequently, a greater number of blocks are 

expected, as observed when comparing the number of blocks across LD thresholds (the 

number of blocks with an LD threshold of 0.1 > 0.3 > 0.6, Figures 3 and 4 and 

Supplementary Files 5 and 6).  

The number of blocked SNPs and pseudo-SNPs before and after QC in both MH2 

and LH2 (Figures 3 and 4 and Supplementary Files 5 and 6) is a function of the genetic 

diversity level of the populations. Longer blocks with many SNPs are expected in less 

genetically diverse populations (Hayes et al., 2003; Villumsen et al., 2009; Hess et al., 

2017) likely due to selection and inbreeding, whereas more pseudo-SNPs (unique 

haplotypes) are expected in more genetically diverse populations (Teissier et al., 2020), 

when the single SNPs out of the LD-clusters are not considered as a block, following the 
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standard definition of haplotype block (Gabriel et al., 2002). However, this also depends 

on the LD threshold used to create the haplotype blocks, as this pattern was clear only 

when LD was greater than 0.1.  

Independently of the LD level used to create the blocks, the relative reduction in 

the number of pseudo-SNPs after QC was greater on the less genetically diverse 

population, with approximately 40% in Breed_B when the LD threshold was set to 0.6. 

The greatest reduction of pseudo-SNPs in populations with less genetic diversity was due 

to the low frequency of the haplotypes in this research, which agrees with the literature 

[e.g., based on simulated data (Villumsen et al., 2009); in dairy cattle populations (Hess 

et al., 2017; Karimi et al., 2018); and in dairy goats (Teissier et al., 2020)]. 

The additional computing time needed for genotype phasing, creating the 

haplotype blocks and the covariates for the models (Feitosa et al., 2019; Teissier et al., 

2020), and running the genomic predictions (Cuyabano et al., 2015; Hess et al., 2017) 

have been indicated as the main drawbacks for the use of haplotypes in routine genomic 

predictions. In this study, the maximum additional computing time observed was 

approximately 7 h (23,663.6 s, Breed_B with LD equal to 0.1 under the LH2 scenario—

Figure 4A and Supplementary File 6). Hess et al. (2017) used marker effect models under 

Bayesian approaches and observed additional time of up to 27.2 h for predictions with 

haplotypes derived from 37K SNPs with training and validation populations of about 

30,000 dairy cattle individuals. Cuyabano et al. (2015) reported that genomic predictions 

using Bayesian approaches and haplotypes took approximately from 1 h to 46 h, 

depending on the number of previously associated SNPs included in the GEBV 

predictions (1K to 50K, respectively), with approximately 4,000 individuals in the 

training and validation populations. Differently from these studies, we used the ssGBLUP 

method, which showed consistent time for the predictions in the 50K SNP panel or when 

fitting haplotypes (as pseudo-SNPs) in the same 𝐆 matrix. This was likely observed 

because the GEBVs are estimated directly based on the 𝐆 matrix and the number of 

pseudo-SNPs added to the non-blocked SNPs (Figures 3 and 4 and Supplementary Files 

5 and 6) was not large enough to require longer time to create the genomic relationship 

matrices. As we calculated GEBVs for more than 62,000 individuals (genotyped and non-

genotyped) using haplotype information with a relatively low increase of time, ssGBLUP 

is a feasible alternative for that purpose. 
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Interestingly, our results suggest that the computing time to obtain pseudo-SNPs 

in less genetically diverse populations is higher than in more diverse populations. This 

could be because more diverse populations have a smaller number of intervals with a 

determined LD level than populations with low genetic diversity, implying in less 

iterations for the algorithm to create the haplotype blocks. The smaller number of 

candidate intervals to create the blocks, leading to a lower computing time, might also 

explain the differences observed when comparing the LD levels within populations, with 

the computing time being significantly greater with an LD threshold of 0.1, followed by 

0.3 and 0.6 LD thresholds. 

4.3 Accuracy and bias of genomic predictions 

Genomic predictions based on whole genome sequence (WGS) data could be 

more advantageous because all the causal mutations are expected to be included in the 

data. However, practical results have shown no increase in GEBV accuracy when using 

WGS over HD (Binsbergen et al., 2015; Ni et al, 2017) or even medium density (~50K) 

SNP panels (Frischknecht et al., 2018). HD SNP panels were developed to better capture 

the LD between SNPs and QTLs and thus improve the ability to detect QTLs and obtain 

more accurate GEBVs (Kijas et al., 2014), especially in more genetically diverse 

populations or even across-breed genomic predictions. However, the 50K SNP panel has 

shown a similar predictive ability to the HD even in highly diverse populations as in sheep 

(Moghaddar et al., 2017). These findings corroborate with our results using the 50K SNP 

panel, regardless of the trait heritability. This suggests that both SNP panels (i.e., 50K 

and 600K) are sufficient to capture the genetic relationships of the individuals, which is 

the base of the genomic predictions based on the ssGBLUP method (Legarra et al., 2009; 

Aguilar et al., 2010; Lourenco et al., 2020). Therefore, we used the 50K SNP panel for 

haplotype-based genomic predictions. 

Genomic predictions are expected to be more accurate with haplotypes instead of 

individual SNPs mainly because they are expected to be in greater LD with the QTL than 

are individual markers (Calus et al., 2008; Villumsen et al., 2009; Cuyabano et al., 2014; 

2015; Hess et al., 2017). In this context, Calus et al. (2008) and Villumsen et al. (2009) 

reported better results for the haplotype-based predictions of GEBVs than individual 

SNPs in simulated data, highlighting the possibility of improving both the accuracy and 

bias of genomic predictions. The Ne of the populations used by Calus et al. (2008) and 
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Villumsen et al. (2009) is similar to the one in Breed_B (~100). However, in this current 

study, haplotype-based models provided similar or lower accuracy and they were also 

similar or more biased than individual SNP-based models under both MH2 or LH2 

scenarios (Figure 5 and Supplementary Files 7 and 9). This might be related to the LD 

level between SNP-QTL and haplotype-QTL and also the amount of information used to 

estimate the SNP and haplotype effects. Calus et al. (2008) and Villumsen et al. (2009) 

had fewer individuals (~1,000), and their simulations were done with more general 

parameters compared to our study. The training set in this research for all populations was 

composed by 60,000 individuals with phenotypes, in which 8,000 of them were also 

genotyped. This amount of data is likely enough to estimate SNP effects and also the 

SNP-QTL LD properly. Thus, predictions with SNPs and haplotypes did not differ in 

some cases due to both of them capturing well the genetic relationships to achieve similar 

prediction results.   

The correlations between off-diagonal, diagonal, and all elements in 𝐀𝟐𝟐 and 𝐆 

created with pseudo-SNPs and independent SNPs together were similar to fit only 

individual SNPs in both SNP panel densities for all LD thresholds and in all populations, 

regardless of the heritability (Supplementary Files 8 and 10). Furthermore, the average, 

maximum, and minimum values of the diagonal elements in 𝐆 created when combining 

pseudo-SNPs and independent SNPs were also similar to using only individual SNPs for 

both SNP panel densities in all scenarios investigated. Therefore, combining haplotypes 

and SNPs in a single  𝐆  matrix captured the same information as fitting only individual 

SNPs, and, consequently, resulting in similar GEBV predictions.  

Another reason for the similar genomic predictions when fitting individual SNPs 

and haplotypes might be the absence of or negligible epistatic interaction effects between 

SNP loci within haplotype blocks. In humans, a species with high Ne (Park et al., 2011), 

Liang et al. (2020) showed that epistasis was the reason for increased accuracy with 

haplotypes over individual SNPs for health traits. In other words, a similar accuracy 

between SNPs and haplotypes was observed when there was negligible epistasis effect. 

The same authors also pointed out that predictions using haplotypes might only be worse 

than fitting individual SNPs because of a possible “haplotype loss,” which can happen 

when SNP effects are not accurately estimated by the haplotypes. As no epistatic effects 

are currently simulated by QMSim (Sargolzaei and Schenkel, 2009) and, therefore, were 
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not simulated in the current study, different from our assumption that haplotypes could 

improve the predictions in more genetically diverse populations (Breed_C, Breed_E, 

Comp_2 and Comp_3), the accuracy and bias estimated based on haplotypes were similar 

or worse compared to fitting individual SNPs. 

Many studies based on real datasets have shown small improvements in the 

performance of haplotype-based genomic predictions. For instance, Cuyabano et al. 

(2014) showed up to a 3.1% increase in the accuracy for milk protein when using LD-

based haplotypes. Cuyabano et al. (2015) also obtained gains in accuracy of up to 1.3% 

using pre-selected SNPs associated with the trait combined with the haplotypes as 

covariates in the models for production, fertility, and health traits. Mucha et al. (2019) 

showed no differences in predictions with high-frequency haplotypes compared to SNPs 

when evaluating reproductive performance traits and somatic cell score in Polish dairy 

cattle. Additionally, Feitosa et al. (2019) obtained nearly the same accuracy and bias for 

meat fatty acid (MFA) traits in Nellore cattle when fitting individual SNPs or haplotypes. 

These findings indicate that, even in instances where haplotypes are better than SNPs, the 

improvements are negligible or small. However, considerable improvements in 

haplotype-based predictions have also been reported in the literature for relatively less 

polygenic traits with known major genes or when using biological information to 

construct the haplotype blocks. Won et al. (2020) reported a significant increase of 4.6% 

in GEBV accuracy with LD-clustering-based haplotypes for eye muscle area in Korean 

cattle. In Simmental cattle, Xu et al. (2020) reported increases of 9.8% in carcass weight 

when incorporating haplotype information based on SNPs from functionally related 

genomic regions. Teissier et al. (2020) reported an increase in accuracy of up to 22% 

when using haplotypes from fixed length or LD blocking strategies under an ssGBLUP 

setting. Based on these literature reports in livestock, it seems that haplotype predictions 

could provide better results when traits are oligogenic or affected by major genes, which 

are less common in livestock breeding goals. In addition, the presence of epistatic 

interactions in a real situation can also provide better results (Liang et al., 2020). In this 

sense, using biological information to create the blocks of linked markers to make 

haplotype predictions can be an alternative to improve the genomic predictions in 

genetically diverse livestock populations. Unfortunately, there are limited real datasets of 

enough size with both phenotypes and genotypes for populations with large Ne that could 

be used for validating our findings.  
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It is worth mentioning that haplotype-based models without including the 

independent SNPs (markers not assigned to any block) to create the genomic relationships 

always provided the worst results, regardless of the LD threshold to create the 

haploblocks (0.1, 0.3, and 0.6). These models were also less accurate and more biased in 

all the populations, regardless of the genetic diversity level and heritability (Figure 5 and 

Supplementary Files 7 and 9). The worst results were obtained when fitting only pseudo-

SNPs from blocks with an LD threshold of 0.3 (PSLD03) and in more genetically diverse 

populations (Breed_C, Breed_E, Comp_2, and Comp_3). This might have occurred 

because fitting only pseudo-SNPs from the haploblocks with two or more SNPs is not 

enough to consider all the important chromosomic regions influencing the trait of interest. 

The number of blocks, blocked SNPs, and pseudo-SNPs that were used to make the 

predictions were significantly lower with the LD level of 0.3 compared to 0.1 in both 

simulations (Figure 3 and 4 and Supplementary Files 5 and 6), with this being likely the 

reason for the lowest accuracy and largest bias observed for PS_LD03. In this context, 

increasing the LD threshold to create the haploblocks have hampered the prediction with 

only haplotypes because a larger number of genomic markers were not considered to 

make the predictions. However, increasing the LD threshold to create the blocks and using 

the non-clustered SNPs together with the pseudo-SNPs did not affect the prediction 

results, presenting similar GEBV accuracies and bias compared to SNP-based 

predictions. In addition, the main differences in the properties of the 𝐆 matrix were 

observed when only pseudo-SNPs from haploblocks with bigger LD thresholds were 

used, with lower correlations between off-diagonal and all elements in the 𝐀𝟐𝟐 and 𝐆  

matrices and differences in the maximum and minimum values of the diagonal elements 

of the 𝐆 (Supplementary Files 8 and 10). Therefore, independently of the LD threshold 

used to create the haploblocks, we recommend using the non-clustered SNPs with pseudo-

SNPs from multi-marker haploblocks to make haplotype-based predictions, as well as in 

genome-wide association studies (GWAS) using haplotypes, because these variants may 

play an important role.  

Separating the independent and pseudo-SNPs in two different random effects, 

with no shared covariances structures, did not significantly impact the genomic 

predictions, but had a computational cost. The genetic parameter estimation and GEBV 

prediction required more computing time using these two genetic components in the 

model, with more iterations and greater time in each iteration than the other models (data 



45 

 

 

not shown), sometimes leading to no convergence of the solutions (IPS_2H_LD03 in the 

Breed_C, Comp_2, and Comp_3 under MH2). The model with pseudo-SNPs and 

independent SNPs in two genetic components is more complex, and the convergence 

difficulty might suggest poor model parametrization, potentially because the random 

effects were assumed to be uncorrelated. This fact can be confirmed by high correlations 

(above than 0.90) between the inverted 𝐇 matrices with non-clustered SNPs and pseudo-

SNPs (data not shown). Although increased computational time was a common problem 

in both heritability levels, convergence was achieved in all analyses with low heritability. 

Our findings suggest that a single 𝐆 matrix with individual SNPs is enough to capture the 

QTL variation, regardless of the genetic diversity and heritability. Nonetheless, using two 

uncorrelated genetic components can be useful in other situations such as fitting SNPs 

and structural variants (e.g., copy number variation—CNVs) in the same model. 

5 Conclusions 

Haplotype-based models did not improve the performance of genomic prediction 

of breeding values in genetically diverse populations (assumed as Ne > 150) under 

ssGBLUP settings. A medium-density 50K SNP panel provided similar results to the 

high-density panel for the genomic predictions using individual SNPs or haplotypes, 

regardless of the heritability and genetic diversity levels. ssGBLUP can be used to predict 

breeding values for both genotyped and non-genotyped individuals using haplotype 

information in large datasets with no increase in computing time when fitting a single 

genomic relationship matrix.  
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11 Contribution to the Field Statement  

Genetic diversity is mainly measured by the effective population size (Ne) and is 

inversely proportional to the accuracies and bias of breeding values in genomic 

evaluations. Therefore, less accurate and more biased predictions are expected in 

genetically diverse populations (Ne > 150, such as sheep, goats, and some beef cattle 

populations), requiring larger training sets to obtain accurate estimates. Genomic 

selection has been also implemented in genetically diverse populations following the 

increase in the use of genomic information in livestock, but there is still a need for better 

strategies to improve the breeding value predictions in these populations. Improvements 

in the accuracies of genomic predictions have been reported when using haplotype-based 

models over individual SNPs, mainly because they better account for the linkage 

disequilibrium between QTLs and haplotypes. However, these results were obtained 

predominantly in less diverse populations (e.g., dairy cattle, Ne < 150). In this research 

we presented a comprehensive investigation regarding the use of SNPs and/or haplotypes 

for genomic prediction under the single-step genomic BLUP approach. For that, we 

simulated pure and composite populations with several levels of genetic diversity. An 
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extended literature review and recommendations about further steps in haplotype 

predictions in real populations are also presented. 
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in the genomic models was also evaluated. WssGWAS did not perform better than 
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trait loci (QTL) broadly distributed across the whole genome. Association studies using 

LD-based haplotypes should include NCSNPs and different LD thresholds to increase the 

likelihood of finding the relevant genomic regions affecting the trait of interest. The main 

candidate genes identified, i.e., ATXN10, ADAM10, VAX2, ATP6V1B1, CRISPLD1, 

CAPRIN1, FA2H, SPEF2, PLXNA1, and CACNA2D3, are involved in important biological 

processes and metabolic pathways related to behavioral traits, social interactions, and 

aggressiveness in cattle. Future studies should further investigate the role of these 

candidate genes. 

Keywords: candidate genes; functional analysis; haplotype block; linkage disequilibrium; 

livestock behavior; pseudo-SNPs; social interaction 

 

1. Introduction 

Behavior is a complex trait influenced by multiple factors (e.g., age, health 

status, life experiences, genetics) and the interaction among group-housed 

individuals and the environment [1]. Emotional or behavioral responses are 

actions resultant of feedback from the central nervous system after decodifying 

an external stimulus, which has been studied for a long time in humans [2]. Prior 

to domestication, animals presented different behavior characteristics compared 

to domesticated populations, indicating that behavioral traits can be genetically 

modified through selective breeding [1]. Livestock behavior is important due to 

its impact in several other relevant traits for the industry, including production, 

reproduction, and both animal and handler’s welfare and health [3–5]. Docile 

temperament is a desired behavior in cattle because it facilitates the handling 

process and it has been proven to be favorably associated with meat quality, 

productive efficiency, and welfare traits [6]. An indicator of temperament used 

for selection in North American Angus cattle is yearling temperament (YT). YT 

is subjectively scored by farmers/handlers when a one-year-old calf is being 

processed through the chute and should be an observation of how animals enter, 

exit, and react while being handled [7]. A previous study has shown that YT is 

heritable (heritability ~0.38), suggesting genetic progress can be achieved 

through direct selection [5]. Additionally, a multi-species systematic review 

reported 797 genomic regions and 383 candidate genes associated with 

behavioral traits in cattle [8]. Only six genes (GRM5, MAML3, C8B, RUSC2, 

POMC, MIPOL1, and SLC18A2) were in overlap among trait definitions and 
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populations [8], suggesting a natural particularity of each population and 

measurement definition. 

Using alternative approaches, such as haplotype-based methods, for 

detecting genomic regions influencing YT is of great interest to the beef cattle 

industry. Haplotypes are usually defined as a set of adjacent loci expected to be 

inherited together with a small probability of recombination [9]. Haplotype 

blocks (i.e., haploblocks) are sets of adjacent single nucleotide polymorphisms 

(SNPs) markers expected to be in higher linkage disequilibrium (LD) with the 

quantitative trait loci (QTL) than single SNPs [10,11]. Furthermore, haplotypes 

can also capture small epistatic effects within haploblocks [12–14], justifying the 

advantages of using haplotypes for both genomic prediction of breeding values 

[12–14] and genome-wide association studies (GWAS) [14–16]. However, due to 

the more complex implementation of haplotype-based methods, they have been 

underused compared to SNP-based methods [17,18]. For GWAS purposes, the 

combination of SNP- and haplotype-based methods are recommended because 

it might increase the possibility of capturing different types of QTL [15,16], i.e., 

different sizes (spanning small or large genomic regions), allelic frequency, and 

LD levels with SNPs due to differential recombination rates.  

Both phenotypes and genotypes are required when performing GWAS; 

however, not all phenotyped individuals in a population are genotyped and 

vice-versa [19,20]. In this context, Single-step Genomic Best Linear Unbiased 

Prediction (ssGBLUP) is a method that simultaneously combines information 

from phenotypes, pedigree, and genotypes when calculating genomic estimated 

breeding values (GEBV) for both genotyped and non-genotyped individuals 

[21,22]. Therefore, single-step GWAS (ssGWAS), which uses GEBV from 

ssGBLUP to derive SNP effects, is an efficient method to perform GWAS because 

phenotypes from genotyped and ungenotyped individuals are used to more 

accurately derive SNP effects [20]. However, the infinitesimal model (many loci 

explaining similar and small proportions of the total additive genetic variance) 

is an assumption of both ssGBLUP and ssGWAS [19]. As some loci (major genes) 

can explain major proportions of the additive variance of the traits of interest, 

weighted ssGBLUP (WssGBLUP) and its GWAS version (WssGWAS) were 

proposed to prioritize markers potentially explaining larger proportions of the 

total additive genetic variance [19,23].  



59 

 

 

Despite its relevance in animal breeding, to the best of our knowledge, no 

haplotype-based GWAS has been used to investigate the genetic background of 

temperament in cattle. Additionally, there is a lack of studies implementing 

haplotypes under ssGWAS and WssGWAS approaches. Therefore, the objective 

of this study was to perform a haplotype-based ssGWAS for YT in American 

Angus cattle. Different haplotype-based GWAS approaches were implemented 

and tested to uncover the potential genomic regions associated with YT, 

including: (1) different LD thresholds to create the LD-based haplotypes, (2) 

including or not including the non-LD-clustered SNPs in the association 

analyses, and (3) ssGWAS and WssGWAS. Understanding the genetic 

background of behavioral traits is of great interest for the beef cattle industry 

because it could enable the optimization of genetic selection for more docile 

animals in which the genetic progress would be permanent and cumulative over 

generations. Genetic or genomic selection for any trait impacts several biological 

mechanisms involved in the phenotypic expression of the trait under selection as 

well as genetically correlated traits. Therefore, it is paramount to understand 

these underlying biological mechanisms. 

2. Materials and Methods 

2.1. Phenotypic and Pedigree Data 

The American Angus Association (through Angus Genetics Inc.; St Joseph, 

MO, USA) provided the phenotypic, genotypic, and pedigree datasets. In total, 

266,029 animals recorded for YT, born between 2001 and 2018, were available for 

the analyses. The phenotypic dataset has previously been processed for quality 

measurements (please see Alvarenga et al. [5] for a complete description of the 

data). Briefly, yearling temperament is a categorical trait recorded using six 

scores (from 1 to 6), in which 1 represents docile and 6 represents very aggressive 

animals. For more details about the codification and criteria to classify the 

animals, please see [5] and [7]. From the total number of records, 71.9% were 

classified as docile (score 1), 22.2% as restless (score 2), 5.1% as nervous (score 3), 

and 0.8% as aggressive (scores 4 to 6). The scores 4, 5, and 6, which represents 

flighty, aggressive, and very aggressive, respectively, were grouped together as 

a single category (aggressive) due to their low incidence [5]. The number of 

animals per management class in the phenotypic data were: 147,671 bulls, 3,332 

steers, and 115,026 females. The pedigree data initially had 4,410,551 animals 
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born from 1836 to 2018, and 578,819 individuals remained to construct the 

pedigree-based additive genetic relationship matrix (A), tracing back ancestors 

up to four generations. 

2.2. Genotypic Data 

The genotypic dataset included 69,559 animals genotyped using a 50 K SNP 

panel (54,609 SNP markers) of an imputed SNP set similar to the Illumina 

BovineSNP50V2 and Illumina BovineSNP50V3 (Illumina, Inc., San Diego, CA, 

USA), designed for commercial purposes. Markers with minor allele frequency 

(MAF) < 0.01, call rate < 0.90, difference between observed and expected 

heterozygosity > 0.15 (i.e., extreme departure from Hardy-Weinberg 

equilibrium), and not present in the pseudo-autosomal region (PAR) in the X 

chromosome were removed from the genotypic data as part of the quality control 

(QC). PAR was considered the region above BTAX:133,300,518 bp [24]. 

Additionally, animals with call rates lower than 0.90 were also removed. The QC 

in the genotypic data was done using the PREGSf90 software from the BLUPf90 

family software [25]. After QC, 42,633 markers and 69,437 animals were kept for 

further analyses.  

2.3. Haplotype Block Construction 

The haplotype block (haploblock) construction process started with phasing the 

SNP genotypes in the FImpute software v.3.0 [26]. After phasing, haploblocks 

were constructed with a variable size approach using the LD values measured 

by the 𝑟2 metric [27]. The Big-LD method [28] was used to construct the blocks 

because it is more computationally efficient and accurate in estimating the 

recombination hotspots than other commonly used algorithms [28]. The “gpart” 

package [29] implemented in the R software [30] was used to implement the Big-

LD method for constructing the haploblocks. As the QTL can have different 

genetic structures, the LD thresholds of 0.15, 0.50, and 0.80 were used to create 

the haploblocks to account for different recombination levels within regions, 

assumed to be high, medium, and low, respectively. In other words, these LD 

thresholds were used to capture different block structures: bigger blocks with 

more SNPs in low LD (0.15), intermediary blocks with moderate LD (0.50), and 

smaller blocks with lower number of SNPs in high LD (0.80). Furthermore, the 

haploblocks used in this research followed the definition proposed by Gabriel et 

al. [9], being sizable regions delimited to at least two loci (SNPs). 
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2.4. Single-Step GWAS with Haplotypes 

The unique haplotype alleles within the haploblocks were coded as pseudo-

SNPs, which were submitted to the same QC as the SNPs (described in Section 

2.2) for performing the ssGWAS with haplotypes. The pseudo-SNPs were coded 

as 0, 1, or 2 for the absence of both copies, presence of one copy, or presence of 

two copies of the reference haplotype allele [31]. Thereafter, the THRGIBBS1f90 

software [25] was used to predict the GEBV for all individuals considering YT as 

a categorical trait (threshold model) and the pseudo-SNPs to construct the 

genomic relationship matrix.  

The contemporary groups (CG) and the animal model used to predict the YT 

GEBV were previously defined by Alvarenga et al. [5], i.e.: 

𝐲 =  𝐗𝐛 +  𝐖𝐰 +  𝐙𝐮 +  𝐞, (1) 

where 𝐲 is the vector of phenotypic records for YT, 𝐛 is the vector of systematic 

effects (age of dam, conception type, and calf age deviation from 365 days as 

linear covariate), 𝐰 is the random vector of CG effects with 𝐰 ~𝑁(0, 𝐈𝜎𝑤
2), 𝐮 is the 

random vector of additive genetic effects with 𝐮 ~𝑁(0, 𝐇𝜎𝑔
2), and 𝐞 is the random 

residual term with 𝐞 ~𝑁(0, 𝐈𝜎𝑒
2). CG was formed by concatenating birth month 

and year, birth herd, birth sex, weaning date, weaning herd, weaning sex, creep 

feeding offered or not, date of temperament measurement, YT measurement 

herd, sex at the YT measurement, temperament group age deviation, and 

presence of ultrasound records (measure of additional human-animal 

interaction). 𝐗, 𝐖, and 𝐙 are the incidence matrices for the systematic, CG, and 

additive genetic effects, respectively. A diagonal matrix with large values, 𝚺𝐛, 

was used to represent a vague prior for the systematic effects. The  𝐇 matrix is 

the matrix that combines the pedigree and genomic relationship matrices [21], 

and its inverse (H-1) was directly computed as [22]: 

H-1 = A-1+ [
0 0

0 τ(αG + βA22)
-1 − ωA22

-1 ], (2) 

where A-1 is the inverse of the A matrix, G is the genomic relationship matrix 

computed using the pseudo-SNPs, and A22
-1  is the inverse of the pedigree-based 

relationship matrix between genotyped individuals. The default value (1.0) was 

used for the scaling parameters (τ and ω), while 0.90 and 0.10 were used for the 

weighting parameters α and β, respectively, in the PREGSf90 package [25]. G 

was computed as in the first method proposed by VanRaden [32], which had the 

following structure: 
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𝐆 =
(𝐌 − 𝟐𝐩)𝐃(𝐌 − 𝟐𝐩)′

2 ∑𝑝𝑖(1 − 𝑝𝑖)
 (3) 

where 𝐌 is the n × m (number of individuals by number of markers, respectively) 

matrix of genotype calls (0, 1, or 2), 𝐩 is a vector with the allelic frequencies 𝑝𝑖  for 

the markers, and 𝐃 is a m × m diagonal matrix that corresponds to an identity 

matrix (𝐈) when 𝐆 is applied with the same weight (i.e., 1) for the markers (i.e., 

ssGWAS). 

The variance components (i.e., 𝜎𝑤
2 , 𝜎𝑔

2, and 𝜎𝑒
2) for YT in the American Angus 

population using the above model were previously estimated by Alvarenga et 

al. [5] and were fixed to predict the GEBVs in this study. The chain parameters 

used to make the predictions were 10,000 iterations, in which 1,000 were 

discarded as burn-in, and 10 was used as thin. After the GEBV prediction, the 

pseudo-SNP effects were back-solved using the POSTGSf90 software [25]. The 

formula to back-solve the pseudo-SNP effects is [33]:  

𝐠 = 𝐃(𝐌 − 𝟐𝐩)′𝐆−𝟏𝐮̂ (4) 

where 𝐠 is the vector of marker effects, 𝐆−𝟏 is the inverted 𝐆 matrix, 𝐮̂ is the vector of 

predicted GEBV, and all other matrices and vectors were described above. In addition to 

the marker effects, the POSTGSf90 software [25] was also used to calculate the 

percentage of the total additive genetic variance explained by each pseudo-SNP 

(haploblock allele), i.e.: 

𝑉𝐸𝑀%𝑖 =
𝑉(𝑔𝑖)

𝜎𝑔
2

× 100 =
2𝑝𝑖(1 − 𝑝𝑖)𝛼̂𝑖

2

𝜎𝑔
2

× 100 (5) 

where 𝑉𝐸𝑀%𝑖 is the percentage of the total additive genetic variance explained 

by the ith pseudo-SNP, 𝑉(𝑔𝑖)  is the additive genetic variance explained by the 

ith pseudo-SNP, 𝛼̂𝑖
2 is the square of the estimated allelic substitution effect, and 

the other components of the formula were previously defined. As the pseudo-

SNPs were the alleles present in the haploblock loci, the percentage of the 

variance explained by each haploblock was computed as:  

𝑉𝐸𝐻%𝑗 = ∑ 𝑉𝐸𝑀%𝑖𝑗

𝑛𝑗

𝑖=1

 (6) 

where 𝑉𝐸𝐻%𝑗  is the percent of the total additive genetic variance explained by 

the jth haploblock, 𝑛𝑗 is the number of haplotype alleles (pseudo-SNPs) present 

in the jth haploblock, and 𝑉𝐸𝑀%𝑖𝑗  are the variances explained by the ith pseudo-

SNPs present within the jth haploblock. 
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2.5. Weighted Single-Step GWAS with Haplotypes 

The WssGWAS uses, for simplicity, an interactive process to estimate the 

weights for the markers. The first step in the WssGWAS is to perform the 

ssGWAS (i.e., considering equal weights for all markers). The procedure consists 

of three steps, starting with the prediction of GEBV from ssGBLUP, deriving the 

weights for the markers by back-solving SNP effects, and including the weights 

into the  𝐃 matrix to construct the 𝐆 matrix that is combined with the pedigree-

based relationship (resulting in the H) in the next steps in an iterative process 

[19]. For details of the full algorithm, please see Wang et al. [19]. The POSTGSf90 

software [25] was used for back-solving the GEBV to pseudo-SNP effects and 

weights, and the non-linear A (NLA) method [32] was used to obtain the weights. 

The NLA weighting method was used because it has better statistical properties 

(i.e., convergence of the GEBV accuracies and control over extreme weight 

values) than the original method proposed by Wang et al. [19], as suggested by 

Fragomeni et al. [34]. In addition to the first GEBV prediction and association 

(ssGWAS), two iterations in WssGBLUP were completed to provide high 

accuracy and low bias of the GEBV used in the WssGWAS [19,34], and the results 

of these two iterations were compared to ssGWAS. The same genetic model, H 

matrix construction, and percentage of the variances explained by each pseudo-

SNP and haploblock loci presented in the topic 2.4 were also used for the 

WssGWAS. 

2.6. Scenarios Evaluated 

In addition to the three initial scenarios regarding the ssGWAS method (i.e., 

ssGWAS, 2nd iteration WssGWAS, and 3rd iteration WssGWAS), alternative 

approaches were used when constructing the 𝐆 matrix. The scenarios included 

the construction of haplotypes based on: (1) the LD thresholds of 0.15 (H0.15), 

0.50 (H0.50), and 0.80 (H0.80), as mentioned in the topic 2.3.; and (2) considering 

only haplotypes or the haplotypes and non-LD-clustered SNP (NCSNP) from 

those same LD thresholds together in the construction of a single 𝐆 matrix. The 

NCSNP were SNP not assigned to any block during the haploblock construction 

with a determined LD threshold. These scenarios with NCSNP were also 

evaluated to avoid a possible loss of ability in dissecting the genetic variation by 

losing the markers outside blocks described by Li et al. [35], and the use of a 

single 𝐆 constructed with NCSNP and haplotypes provides greater GEBV 
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accuracy and lower bias [18]. Therefore, six scenarios in the context of the 𝐆 

construction were investigated: H0.15, H0.50, H0.80, and NCSNP and 

haplotypes from blocks with LD thresholds of 0.15, 0.50, and 0.80 

(NCSNP_H0.15, NCSNP_H0.50, and NCSNP_H0.80, respectively). All scenarios 

are described in Table 1.  

 

Table 1. Scenarios used to evaluate the traditional and weighted single-step 

GWAS (ssGWAS and WssGWAS, respectively) using haplotypes for yearling 

temperament in American Angus cattle. 

Method Marker Information 1 Scenario Abbreviation 

ssGWAS 

H0.15 ssGWAS_H0.15 

H0.50 ssGWAS_H0.50 

H0.80 ssGWAS_H0.80 

NCSNP_H0.15 ssGWAS_NCSNP_H0.15 

NCSNP_H0.50 ssGWAS_NCSNP_H0.50 

NCSNP_H0.80 ssGWAS_NCSNP_H0.80 

WssGWAS iteration 2 

(WssGWAS_2) 

H0.15 WssGWAS_2_H0.15 

H0.50 WssGWAS_2_H0.50 

H0.80 WssGWAS_2_H0.80 

NCSNP_H0.15 WssGWAS_2_NCSNP_H0.15 

NCSNP_H0.50 WssGWAS_2_NCSNP_H0.50 

NCSNP_H0.80 WssGWAS_2_NCSNP_H0.80 

WssGWAS iteration 3 

(WssGWAS_3) 

H0.15 WssGWAS_3_H0.15 

H0.50 WssGWAS_3_H0.50 

H0.80 WssGWAS_3_H0.80 

NCSNP_H0.15 WssGWAS_3_NCSNP_H0.15 

NCSNP_H0.50 WssGWAS_3_NCSNP_H0.50 

NCSNP_H0.80 WssGWAS_3_NCSNP_H0.80 

1 H0.15, H0.50, and H0.80: haplotypes from blocks with linkage disequilibrium (LD) 

thresholds of 0.15, 0.50, and 0.80, respectively; NCSNP_H0.15, NCSNP_H0.50, and 

NCSNP_H0.80: non-clustered SNP and haplotypes from blocks with LD thresholds of 

0.15, 0.50, and 0.80, respectively. 

2.7. Empirical Selection of the Candidate Regions for Further Investigation 

The percentage of the total additive genetic variance explained by the 

markers was evaluated to determine the regions to be further investigated. In 

this context, the moments of the distribution from the percentage of the variance 
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explained by the markers were estimated first, and then the skewness-kurtosis 

plot proposed by Cullen and Frey [36] was utilized to select candidate 

distributions. The skewness-kurtosis plot [36] presented values for the moments 

of common distributions (normal, uniform, exponential, logistic, Beta, log-

normal, Gamma, and Weibull) to select the distribution that better fit the data. 

The R package “fitdistplus” [37] was used to evaluate the skewness-kurtosis plot 

using 10,000 bootstrap samples to choose candidate distributions for the 

percentage of the variance explained by the markers. The Beta or Gamma 

distributions were chosen based on the skewness-kurtosis plot to be candidate 

distributions (not the same distribution for all scenarios; Supplementary File 1). 

Thereafter, the theoretical and empirical probability density function (PDF), 

cumulative probability function (CDF), and QQ and PP plots for the Beta and 

Gamma distributions were evaluated. The Beta and Gamma distributions fit the 

data well and were used to determine the candidate regions to be further 

investigated. The markers that were further investigated explained the largest 

percentage of the additive variance and were present in the quantile 0.001% of 

the fitted distribution, i.e., considered to be the most relevant genomic regions 

(top 0.001%). To obtain candidate regions for YT, the quantile 0.001% for the top 

markers that explained most of the additive variance was empirically defined 

because it is an extreme tail of the distribution. Using greater thresholds, e.g., 

0.01 or 0.05%, only increased the number of genes and QTL related to more 

general functions and biological processes (Supplementary Files 2 and 3). 

2.8. Functional Analyses 

The top 0.001% genomic regions for YT were used to find genes and 

overlapping QTL using the Biomart tool from Ensembl 

(www.ensembl.org/biomart/martview/ad1112a783c0e0ae22e6572189d5bead, 

accessed on 14 August 2021) and the Animal QTLdb [38] 

(www.animalgenome.org/cgi-bin/QTLdb/BT/index, accessed on 14 August 

2021), respectively. These analyses were done based on the latest ARS-UCD1.2 

bovine genome assembly [39,40]. Positional candidate genes overlapping with 

the top genomic regions were functionally annotated using the DAVID platform 

(https://david.ncifcrf.gov/home.jsp, accessed on 15 August 2021) with focus on 

the Gene Ontology biological processes (GO_BP) and metabolic pathways from 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the default 

options. 
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3. Results 

3.1. Statistics from Haplotype Blocking 

The number of non-clustered SNPs (i.e., SNPs out of the LD-blocks) ranged 

from 20,849 to 36,881 when using the LD thresholds of 0.15 and 0.80, respectively 

(Table 2). The number of clustered SNPs ranged from 5822 to 21,784 with LD 

thresholds of 0.80 and 0.15, respectively. Similar to the number of clustered SNPs, 

the number of blocks decreased with higher LD thresholds, varying from 2721 to 

9634 when 0.80 and 0.15 were used as LD thresholds, respectively. As previously 

defined, the minimum number of SNPs in blocks were 2 for all LD thresholds, 

whereas the maximum number of SNPs in blocks was equal to 9 for the LD 

threshold of 0.15 and 7 for 0.50 and 0.80. On average, smaller blocks were 

obtained when the LD threshold was 0.80 (0.030 Mb), and bigger blocks were 

obtained with an LD threshold of 0.15 (0.035 Mb). The minimum block size was 

65 bp with the LD thresholds of 0.15 and 0.50, and 84 bp with the LD threshold 

of 0.80. The maximum block size ranged from 0.160 Mb to 0.201 Mb with the LD 

thresholds of 0.80 and 0.15, respectively. The number of pseudo-SNPs (unique 

haplotype alleles) before QC varied between 12,877 and 56,734 with LD 

thresholds of 0.80 and 0.15, respectively. After QC, the number of pseudo-SNPs 

ranged from 11,389 to 44,559, respectively, in the same LD thresholds. The 

number of NCSNP and pseudo-SNPs before QC, considering them all as 

genomic markers, ranged between 49,688 and 77,583 with LD thresholds of 0.80 

and 0.15, respectively. After QC, the number of NCSNP and pseudo-SNPs 

ranged from 48,227 to 65,435, respectively, in the same LD thresholds. 

3.2. Traditional and Weighted Single-Step GWAS Fitting Only Haplotypes 

The number of top 0.001% genomic regions ranged from 5 

(WssGWAS_2_H0.80 and WssGWAS_3_H0.80) to 17 (ssGWAS_H0.15) when 

only haplotypes were used in the ssGWAS (Figure 1). Despite the number of top 

0.001% genomic regions identified being slightly lower in WssGWAS compared 

to ssGWAS scenarios (Figure 1), all top genomic regions highlighted by 

WssGWAS scenarios (Figures 2–4) were present in the ssGWAS results 

regardless of the iteration within LD thresholds. For this reason, functional 

annotation was performed only for ssGWAS results (Supplementary File 2). The 

top haplotypes for YT were located across 14 chromosomes (BTA1, BTA2, BTA3, 

BTA4, BTA7, BTA9, BTA11, BTA18, BTA20, BTA22, BTA23, BTA26, BTA27, and 
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BTA29; Figure 2) for the ssGWAS_H0.15 scenario, which presented top genomic 

regions more spread out than the other scenarios using only haplotypes. A total 

of 11, 7, and 5 candidate genes overlapped with the top 0.001% genomic regions 

identified by ssGWAS_H0.15, ssGWAS_H0.50, and ssGWAS_H0.80, 

respectively, whereas 67, 55, and 30 QTL overlapped in these same scenarios, 

respectively. No associations were observed in the X chromosome (PAR region) 

when fitting only haplotypes. 

 

Table 2. Descriptive statistics of the haplotype blocks with different linkage 

disequilibrium (LD) thresholds used in each scenario, before and after quality 

control (QC), in American Angus cattle. 

Descriptive LD_0.15 LD_0.50 LD_0.80 

Number of non-clustered SNPs 20,849 30,501 36,811 

Number of clustered SNPs 21,784 12,132 5822 

Number of blocks 9634 5617 2721 

Minimum number of SNP in blocks 2 2 2 

Maximum number of SNP in blocks 9 7 7 

Average (SD 1) block size (Mb) 0.035 (0.020) 0.032 (0.014) 0.030 (0.013) 

Minimum block size (bp) 65 65 84 

Maximum block size (Mb) 0.201 0.161 0.160 

Number of pseudo-SNPs 2 before QC 56,734 27,324 12,877 

Number of pseudo-SNPs after QC 44,559 23,918 11,389 

Number of non-clustered and pseudo-

SNPs before QC 
77,583 57,825 49,688 

Number of non-clustered and pseudo-

SNPs after QC 
65,435 54,444 48,227 

1 Standard deviation. 2 Pseudo-SNPs are the unique haplotype alleles from the 

combination of phased SNPs within haplotype blocks. 

3.3. Traditional and Weighted Single-Step GWAS Fitting Haplotype Blocks and Non-

Clustered SNP 

Including the NCSNP in the association analyses resulted in more top regions 

being captured by the haploblocks from all LD thresholds and under both 

ssGWAS or WssGWAS approaches. The number of top 0.001% genomic regions 

ranged between 36 to 64 in the WssGWAS_3_NCSNP_H0.15 and 

ssGWAS_NCSNP_H0.50 scenarios, respectively (Figure 1). Similar to what was 
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observed when using only haplotypes, all top markers (pseudo-SNPs and 

NCSNP) highlighted by WssGWAS were present in the ssGWAS scenarios 

(Figures 5–7), which also had more top markers in all LD thresholds (Figure 1). 

Functional annotation was performed only for ssGWAS in the scenarios 

including the NCSNP for the same reason previously described (Supplementary 

File 3). Different from what was observed in the ssGWAS using only haplotypes, 

the top 0.001% genomic regions were well distributed in the bovine 

chromosomes, including the PAR region of the X chromosome, with all LD the 

three thresholds used to create the haploblocks. The additional number of top 

0.001% genomic regions using haplotypes and NCSNP together also implied 

more annotated genes and overlapping QTL (36, 54, and 35 genes and 159, 169, 

and 157 QTL for the ssGWAS_NCSNP_H0.15, ssGWAS_NCSNP_H0.50, and 

ssGWAS_NCSNP_H0.80, respectively; Supplementary File 3). 

 

 

 

 

 
Figure 1. Number of top 0.001% genomic regions for yearling temperament in American Angus cattle found by non-

weighted single-step GWAS (ssGWAS) (A) and weighted ssGWAS (WssGWAS) in the second (B) and third (C) iterations. 

H0.15, H0.50, and H0.80: only haplotypes from blocks with linkage disequilibrium (LD) thresholds of 0.15, 0.50, and 0.80, 

respectively; NCSNP_H0.15, NCSNP_H0.50, and NCSNP_H0.80: non-clustered SNPs (NCSNP) and haplotypes from 

blocks with LD thresholds of 0.15, 0.50, and 0.80, respectively. The column colors highlight not including (blue) or including 

NCSNP (green). The column filling highlights different LD thresholds (0.15, 0.50, and 0.80 with a solid, square, and 

diamond filling, respectively).  
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Figure 2. Manhattan plot of the percentage of the total additive genetic variance explained 

by haplotypes from haploblocks built with a linkage disequilibrium threshold of 0.15 for 

yearling temperament in American Angus cattle using single-step GWAS 

(ssGWAS_H0.15; A) and weighted single-step GWAS in the second (WssGWAS_2_H0.15; 

B) and third iterations (WssGWAS_3_H0.15; C). Green points highlighted above the red 

horizontal line are the top 0.001% of markers that explained greater percentages of the 

total additive genetic variance for YT. The X-chromosome (PAR region) is represented by 

the chromosome 30. 

 

3.4. Overlapping Genomic Regions Among Methods and Functional Analyses 

3.4.1. Overlapping Markers  

Considerable overlap among many of the top markers was found by the different 

ssGWAS methods. The majority of the top markers identified by ssGWAS using 

only haplotypes were also present in the scenarios using NCSNP and haplotypes 

together (Figure 8; Supplementary File 4). Only one top haplotype in the 

ssGWAS_H0.15 and ssGWAS_H0.50 scenarios and three haplotypes in the 

A 

B 

C 
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ssGWAS_H0.80 were found exclusively when using haplotypes, i.e., all other 

markers were captured by their respective scenarios using NCSNP. NCSNP 

allowed us to identify unique top regions within each LD threshold used to build 

the haploblocks, with ssGWAS_NCSNP_H0.15, ssGWAS_NCSNP_H0.50, and 

ssGWAS_NCSNP_H0.80 detecting 28, 53, and 58 additional top regions than 

their respective scenarios using only haplotypes. When comparing all scenarios 

fitting only haplotypes, 2 regions were common between ssGWAS_H0.15, 

ssGWAS_H0.50, and ssGWAS_H0.80, at 89 Mb on the BTA7 and 38 Mb on 

BTA20. Furthermore, top regions were specifically identified in each scenario 

with different LD thresholds when only haplotypes were used in the ssGWAS, 

with 13, 6, and 3 haplotypes identified exclusively in ssGWAS_H0.15, 

ssGWAS_H0.50, and ssGWAS_H0.80, respectively. A total of 10 markers were 

found in common between all methods, including NCSNP in ssGWAS. The 

scenarios with NCSNP and haplotypes together also presented markers 

exclusively found by specific LD thresholds, with 27, 33, and 32 markers 

identified by the ssGWAS_NCSNP_H0.15, ssGWAS_NCSNP_H0.50, and 

ssGWAS_NCSNP_H0.80 scenarios, respectively. The 2 common regions between 

all ssGWAS scenarios using haplotypes were also present within the 10 common 

regions when fitting NCSNP and haplotypes together. 

3.4.2. Overlapping Genes  

The overlapping markers among scenarios were also present in genes 

shared between ssGWAS strategies using only haplotypes built with different 

LD thresholds and including the NCSNP. All annotated genes identified based 

on the ssGWAS_H0.15 scenario were also identified by ssGWAS_NCSNP_H0.15 

(Figure 9; Supplementary File 5). Only one (COMMD10) and three (NID2, 

PLXDC1, and DOCK1) annotated genes were identified exclusively by the 

ssGWAS_H0.50 and ssGWAS_H0.80, respectively, compared to the scenarios 

including NCSNP. Considering all ssGWAS scenarios using only haplotypes, a 

unique gene (SPEF2) was found by the three scenarios. Seven genes (5S_rRNA, 

UMAD1, PTPRC, SPEF2, CACNA2D3, HMGCLL1, and MGMT) were identified 

by all three ssGWAS scenarios, including NCSNP, and the unique gene 

overlapped by all three scenarios, including haplotype-only methods, was also 

present among them. 
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Figure 3. Manhattan plot of the percentage of the total additive genetic variance explained 

by haplotypes from haploblocks built with a linkage disequilibrium threshold of 0.50 for 

yearling temperament in American Angus cattle using single-step GWAS 

(ssGWAS_H0.50; A) and weighted single-step GWAS in the second (WssGWAS_2_H0.50; 

B) and third iterations (WssGWAS_3_H0.50; C). Green points highlighted above the red 

horizontal line are the top 0.001% markers that explained greater percentages of the total 

additive genetic variance for YT. The X-chromosome (PAR region) is represented by the 

chromosome 30. 

 

3.4.3. Functional Analyses 

The results from the functional analyses are presented in Table 3 and 

Supplementary Files 6 and 7. No clusters were significantly enriched using 

default parameters in the DAVID platform. For simplicity, only the candidate 

genes, GO_BP, and KEGG metabolic pathways from the Functional Annotation 

tables provided by DAVID for key candidate genes with direct or indirect 

implications in behavioral or docility traits such as those related to the nervous 

system were presented. Details about all the overlapping genes are presented in 

A 
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the Supplementary Files 2 and 3, and the Functional Annotation tables for all 

genes are presented in Supplementary Files 6 and 7.  

 

 

 

 
Figure 4. Manhattan plot of the percentage of the total additive genetic variance explained 

by haplotypes from haploblocks built with a linkage disequilibrium threshold of 0.80 for 

yearling temperament in American Angus cattle using single-step GWAS 

(ssGWAS_H0.80; A) and weighted single-step GWAS in the second (WssGWAS_2_H0.80; 

B) and third iterations (WssGWAS_3_H0.80; C). Green points highlighted above the red 

horizontal line are the top 0.001% markers that explained greater percentages of the total 

additive genetic variance for YT. The X-chromosome (PAR region) is represented by the 

chromosome 30. 

 

The gene ATXN10 (position 116 Mb on BTA5) was annotated in the 

GO:0031175 term, which is associated with neuron projection development. The 

bta05010 KEGG metabolic pathway was annotated for the gene ADAM10 

(position 51 Mb on the BTA10) and is related to the Alzheimer disease. The gene 

VAX2 (position 13 Mb on BTA 11) was annotated in the GO:0007409, 

GO:0007601, GO:0030900, GO:0048048, and GO:0060041 biological processes, 
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which are axonogenesis, visual perception, forebrain development, embryonic 

eye morphogenesis, and retina development in camera-type eye, respectively. 

The biological processes in GO:00076605 and GO:0042472 included the gene 

ATP6V1B1 (position 13 Mb on BTA11) and are related to sensory perception of 

sound and inner ear morphogenesis, respectively. GO:0060325 is related to face 

morphogenesis and includes the CRISPLD1 gene (position 38 Mb on the BTA14). 

The CAPRIN1 gene (position 64 Mb on the BTA15) was annotated in GO:0050775 

and GO0061003, which are related to the positive regulation of dendrite and 

dendrite spine morphogenesis, respectively. Two biological processes included 

the FA2H gene (position 2 Mb on BTA18), which are GO:0032286 and 

GO:0032287, known to be related to central and peripheral nervous system 

myelin maintenance, respectively. The gene SPEF2 (position 38 Mb on BTA20) 

was annotated in GO:0048702, GO:0048854, and GO:0069541, which are related 

to the embryonic neurocranium, brain morphogenesis, and respiratory system 

development. Four biological processes related to the nervous system included 

the PLXNA1 gene, which are GO:0021785, GO: 0048841, GO:1902287, and 

GO:1990138, known to be related to branchiomotor neuron axon guidance, 

regulation of axon extensions involved in guidance, the semaphorin-plexin 

signaling pathway involved in axon guidance, and neuron projection extension, 

respectively. The PLXNA1 gene was also annotated in the bta04360 KEGG 

pathway, which is related to axon guidance. Finally, the gene CACNA2D3 was 

annotated in the bta04921 KEGG pathway and is related to the oxytocin signaling 

pathway. 

3.5. QTL Overlapping with the Top 0.001% Markers for Yearling Temperament 

Similar to what was observed with the genes, the overlapping markers across 

scenarios also implied in QTL found in more than one scenario. All QTL 

identified using only haplotypes with LD thresholds of 0.15 and 0.50 were 

captured when the NCSNP were used in the ssGWAS, while only two QTL were 

found by ssGWAS_H0.80 and not by ssGWAS_NCSNP_H0.80 (Figure 10; 

Supplementary File 8). Using different LD thresholds to create the haploblocks 

resulted in specific QTL captured by the different block structures, with 39, 27, 

and 2 QTL identified exclusively by ssGWAS_H0.15, ssGWAS_H0.50, and 

ssGWAS_H0.80, respectively. Adding NCSNP in ssGWAS also resulted in QTL 

captured by specific scenarios regarding the LD threshold to create the 

haploblocks, with 77, 78, and 69 QTL identified exclusively by 
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ssGWAS_NCSNP_H0.15, ssGWAS_NCSNP_H0.50, and 

ssGWAS_NCSNP_H0.80, respectively. A total of 28 QTL were identified by all 3 

scenarios using haplotypes only and were also present among the 76 QTL 

identified by all 3 scenarios including NCSNP and haplotypes. 

 

 

 

 
Figure 5. Manhattan plot of the variance explained by non-clustered SNPs and haplotypes 

from haploblocks built with a linkage disequilibrium threshold of 0.15 for yearling 

temperament in American Angus cattle using single-step GWAS 

(ssGWAS_NCSNP_H0.15; A) and weighted single-step GWAS in the second 

(WssGWAS_2_NCSNP_H0.15; B) and third iterations WssGWAS_3_NCSNP_H0.15; C). 

Green points highlighted above the red horizontal line are the top 0.001% markers that 

explained greater percentages of the total additive genetic variance for YT. The X-

chromosome is represented by the chromosome 30. 

 

The QTL identified by the scenarios evaluated in this research belong to the 

classes “Milk”, “Health”, “Exterior”, “Production”, and “Reproduction” (Figure 

11). The majority of the QTL identified in each scenario were related to the class 
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“Exterior”, except for the ssGWAS_NCSNP_H0.15 scenario (for this, the class 

“Milk” contained the majority of the QTL). “Milk” was the class most often found 

among QTL after the class “Exterior”, followed by “Production”, 

“Reproduction”, and, lastly, “Health”. The QTL from the class “Health” were 

found only when NCSNP were included in the ssGWAS.  

 

 

 

 
Figure 6. Manhattan plot of the percentage of the total additive genetic variance explained 

by non-clustered SNPs and haplotypes from haploblocks built with a linkage 

disequilibrium threshold of 0.50 for yearling temperament in American Angus cattle 

using single-step GWAS (ssGWAS_NCSNP_H0.50; A) and weighted single-step GWAS 

in the second (WssGWAS_2_NCSNP_H0.50; B) and third (WssGWAS_3_NCSNP_H0.50; 

C) iterations. Green points highlighted above the red horizontal line are the top 0.001% 

markers that explained greater percentages of the total additive genetic variance for YT. 

The X-chromosome (PAR region) is represented by the chromosome 
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4. Discussion 

We have investigated the genomic architecture of YT using large phenotypic 

and genomic datasets from American Angus cattle. Different haploblock 

structures obtained by three LD thresholds to create blocks were used while 

including or excluding the NCSNP in order to capture different genes and QTL 

structures that could affect YT in American Angus.  

 

 
Figure 7. Manhattan plots of the total additive genetic variance explained by non-

clustered SNPs and haplotypes from haploblocks built with a linkage disequilibrium 

threshold of 0.80 for yearling temperament in American Angus cattle using single-step 

GWAS (ssGWAS_NCSNP_H0.80; A) and weighted single-step GWAS in the second 

(WssGWAS_2_NCSNP_H0.80; B) and third (WssGWAS_3_NCSNP_H0.80; C) iterations. 

Green points highlighted above the red horizontal line are the top 0.001% markers that 

explained greater percentages of the total additive genetic variance for YT. The X-

chromosome (PAR region) is represented by the chromosome 30. 
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4.1. Empirical Selection of the Candidate Genomic Regions 

All the steps to obtain the top 0.001% genomic regions for YT presented in 

the Section 2.7 were done because of the lack of a statistical method to properly 

test for significance of markers using ssGWAS for threshold traits. The 

approximated p-values for the markers in the ssGWAS approach was proposed 

under normality assumptions [41] and are not available for threshold traits.  

Only defining a fixed value to select the candidate regions, e.g., 0.50 or 1.00% 

of the additive variance, as most of the GWAS studies employ, would not be an 

equivalent comparison with scenarios using different marker densities (e.g., 

number of pseudo-SNPs from haploblocks with different LD thresholds or 

including or excluding the NCSNP; Table 2), as the percentage of the additive 

genetic variance explained by each marker is inversely proportional to the 

number of markers (Figures 2–7). In addition, it is possible that markers with a 

percentage of the total additive genetic variance smaller than 0.50% are 

biologically associated with the traits of interest. Aguilar et al. [41] presented 

significant p-values for markers that explained ~0.10% (similar to some scenarios 

in this research) of the additive variance for the birth weights in American Angus 

using more than one million phenotypes and approximately 1.4 K genotyped 

sires with phenotyped progeny.  

 

 
Figure 8. Venn diagrams showing the number of markers overlapping among different single-step genome-wide 

association studies (ssGWAS) with haplotypes and non-clustered SNPs. ssGWAS_H0.15, ssGWAS_H0.50, and 

ssGWAS_H0.80: ssGWAS using only haplotypes from blocks with linkage disequilibrium (LD) thresholds of 0.15, 0.50, and 

0.80, respectively; ssGWAS_NCSNP_H0.15, ssGWAS_NCSNP_H0.50, and ssGWAS_NCSNP_H0.80: ssGWAS using non-

clustered SNPs and haplotypes from blocks with LD thresholds of 0.15, 0.50, and 0.80, respectively. 
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It is well known that the significance and the additive variance of the 

markers are dependent on the sample size and population structure, as well as 

the allelic frequencies, additive values of the QTL tagged by the marker, LD 

between marker and QTL (assuming that the QTL is not the marker), and the 

accuracy of the phenotypic information [20,41]. The interaction of these 

components is complex and makes it difficult to define a threshold for selecting 

candidate markers based only on the percentage of the total additive genetic 

variance explained by the markers (or genomic windows). Various key candidate 

genes associated with GO_BP and KEGG pathways were found. These may play 

an important role in YT, as well as previously reported QTL. Nevertheless, 

further studies are needed to evaluate the method to obtain the top regions in 

this study, as defining false or true positive associations is not straightforward 

when using real datasets [20]. 

 

 

Figure 9. Venn diagrams showing the number of genes overlapping among different single-step genome-wide association 

studies (ssGWAS) with haplotypes and non-clustered SNPs. ssGWAS_H0.15, ssGWAS_H0.50, and ssGWAS_H0.80: 

ssGWAS using only haplotypes from blocks with linkage disequilibrium (LD) thresholds of 0.15, 0.50, and 0.80, 

respectively; ssGWAS_NCSNP_H0.15, ssGWAS_NCSNP_H0.50, and ssGWAS_NCSNP_H0.80: ssGWAS using non-

clustered SNPs and haplotypes from blocks with LD threshold of 0.15, 0.50, and 0.80, respectively. 

 

4.2. Additive Genetic Variance Explainded by Genomic Regions across Scenarios  

It was not surprising to not find regions explaining more than 1% of the total 

additive genetic variation for YT, since behavioral traits are highly polygenic 

[4,5,42]. Overall, the variances explained by each unique genomic region (i.e., 

haplotype or SNP) in all scenarios were small and distributed across the 

chromosomes (Figures 2–7 and Supplementary Files 2 and 3), highlighting the 

polygenic nature of YT, which was also reported by Alvarenga et al. [5] using 
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only SNPs. Alvarenga et al. [5] found 11 genomic windows considering five 

adjacent SNPs explaining about 3.33% of the total additive genetic variance for 

YT, and these regions were distributed across the bovine autosome 

chromosomes, similar to the results in the present study. 

 

Table 3. Gene ontology biological terms (GO_BP) and metabolic pathways from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) access of genes overlapped by top 0.001% markers for docility in American Angus cattle 1. 

Chromosome Gene 
S_P 2 

 (Mb) 

E_P 3 

 (Mb) 
GO_BP KEGG 

BTA5 ATXN10 116.029 116.169 GO:0031175  - 

BTA10 ADAM10 51.536 51.679 - bta05010 

BTA11 VAX2 13.483 13.509 
GO:0007409, GO:0007601, 

GO:0030900, GO:0048048, GO:0060041 
- 

BTA11 ATP6V1B1 13.454 13.480 GO:00076605, GO:0042472 - 

BTA14 CRISPLD1 38.295 38.346 GO:0060325 - 

BTA15 CAPRIN1 64.662 64.697 GO:0050775, GO0061003  

BTA18 FA2H 2.151 2.206 GO:0032286, GO:0032287 - 

BTA20 SPEF2 38.369 38.573 GO:0048702, GO:0048854, GO:0069541 - 

BTA22 PLXNA1 60.240 60.280 
GO:0021785, GO: 0048841, 

GO:1902287, GO:1990138 
bta04360 

BTA22 CACNA2D3 45.925 46.819 - bta04921 
1 Only genes with a GO_BP or metabolic pathway related to a behavior or docility trait are presented. Details for all genes 

harboring the top markers are presented in Supplementary Files 6 and 7. 2 Start position. 3 End position. 

 

 
Figure 10. Venn diagrams showing the number of QTL overlapping among different single-step genome-wide association 

studies (ssGWAS) with haplotypes and non-clustered SNPs. ssGWAS_H0.15, ssGWAS_H0.50, and ssGWAS_H0.80: 

ssGWAS using only haplotypes from blocks with linkage disequilibrium (LD) thresholds of 0.15, 0.50, and 0.80, 

respectively; ssGWAS_NCSNP_H0.15, ssGWAS_NCSNP_H0.50, and ssGWAS_NCSNP_H0.80: ssGWAS using non-

clustered SNPs and haplotypes from blocks with LD thresholds of 0.15, 0.50, and 0.80, respectively. 

 

The fact that WssGWAS did not increase the variance explained by major 

genomic regions gives further evidence of the polygenic nature of YT (Figures 2–

7). Furthermore, a high correlation was observed between the GEBVs from 



80 

 

 

ssGWAS and WssGWAS methods (greater than 0.98; Supplementary File 10) 

regardless of the LD threshold used to create the haploblocks (i.e., 0.15, 0.50, 

0.80). An assumption in ssGBLUP, and consequently ssGWAS, is that all markers 

explain similar and small proportion of the total additive genetic variance. Thus, 

WssGBLUP was developed in order to minimize this effect by giving priorities 

to some markers with potentially greater effects [19,23]. In this case, one would 

expect that the genomic regions with a higher impact on the variance of the trait 

would present higher peaks based on WssGWAS compared to ssGWAS. 

Substantial changes in the GEBVs, higher accuracies, and lower bias of genomic 

predictions are also expected with WssGBLUP for those traits with major genes, 

i.e., regions that should receive greater weight [19,23,43]. Hence, due to the 

evidence of this polygenic nature, the results from the ssGWAS scenarios were 

used to identify candidate genes and QTL.  

 

 
Figure 11. Absolute number of quantitative trait loci (QTL) by class overlapping with the top 0.001% markers for yearling 

temperament in American Angus cattle using the single-step GWAS fitting only haplotypes or non-clustered SNPs and 

haplotypes. ssGWAS_H0.15, ssGWAS_H0.50, and ssGWAS_H0.80: ssGWAS using only haplotypes from blocks with 

linkage disequilibrium (LD) thresholds of 0.15, 0.50, and 0.80, respectively; ssGWAS_NCSNP_H0.15, 

ssGWAS_NCSNP_H0.50, and ssGWAS_NCSNP_H0.80: ssGWAS using non-clustered SNPs and haplotypes from blocks 

with LD thresholds of 0.15, 0.50, and 0.80, respectively. 

 

4.3. Weighting Method in the Single-Step GWAS  

In early stages in this study, the weighting method proposed by Wang et al. 

[19] in the WssGWAS beyond the NLA was attempted for comparison purposes. 

However, problems during the iterative process using the Wang et al. [19] 

method regarding the inversion of the 𝐆 matrix used, and it was not possible to 

generate results for the second and third iterations in the majority of the 

scenarios. The NLA method proposed by VanRaden [32] is conservative in the 
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shrinking process due to the limits in the maximum changes in the weights 

applied [34]. However, it is relevant to point out that Wang et al. [19]’s 

assumptions on marker weights rely only on the SNP effect and allelic frequency. 

The weights considered by Wang et al. [19] in this study had a wider range (from 

~0.5 to ~28), and are most likely less accurate, considering the polygenic nature 

of YT, compared to the NLA approach (~0.9 to ~1.6) after the first iteration of the 

weighting process (ssGWAS).  

This problem using the Wang et al. [19] method could be a result of the 

haplotypes being more polymorphic than SNPs [10–12,18], so the broader range 

in the weights could be due to the larger number of alleles in the same region 

compared to SNP tracking the actual additive genetic effect. As the GEBV 

accuracy can decline and bias can increase during the iterative process using the 

Wang et al. [19] method [34], consequently, the SNP effects and variances could 

be less accurate and more biased. Therefore, it is recommended to use NLA 

weights for WssGWAS purposes because it results in more robust weighting 

values. 

4.4. Genes and QTL Overlapping the Top Genomic Regions  

Some of the genes present in the top regions for YT were previously 

reported in other studies to be associated with behavioral traits. The genes 7SK, 

U6, and 5S_rRNA were associated with behavior in cattle by Alvarenga et al. 

[5,8]. The 7SK gene is a small nuclear RNA gene that belongs to a class of subunits 

spread in the bovine genome and that already had a unit previously associated 

with fertility traits [44]. The U6 gene is a gene found in more than one BTA and 

also belongs to a small nuclear RNA class which was previously related to 

temperament [45], maternal behavior [46], and sucking reflex [47] in cattle. 

Beyond small nuclear RNA genes, small nucleolar RNA genes (SNORD25, 

SNORD26, and SNORD27) and long non-coding RNA genes (lncRNA) were 

found, but no previous functions related to behavior, production, reproduction, 

or health were found. Beyond the presence in a top region (position 41 Mb on 

BTA29) for YT, QTL related to milk production and reproduction (two and 11, 

respectively) were also annotated in the same top region (block_81_chr_29; 

Supplementary File 3) where those small nuclear and long non-coding RNA 

genes were found. The RNA genes codify transcriptional factors required for 

splicing [48] so they can be involved in many different processes affecting gene 
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expression. The 5S_rRNA gene is a RNA ribosomal gene that has also been 

reported to be involved in milk, meat quality, and carcass traits [49].  

Despite the small nuclear, nucleolar, and ribosomal RNA genes found, the 

majority of the genes annotated in the top regions are protein coding 

(Supplementary Files 2 and 3). Most of the protein-coding genes are related to a 

broad range of more basal functions (e.g., glucose metabolism, pH regulation, 

transcription; Supplementary Files 6 and 7) according to the Functional 

Annotation Table from the DAVID platform, which could explain the absence of 

significant clusters. The presence of many different biological processes affecting 

YT is expected, as behavioral traits involve many functions between the 

perception of a stimulus and the reaction to a specific stress or situation [50,51]. 

Nevertheless, genes present in GO_PB and KEGG pathways related to nervous 

system development, mental disorders, stimuli perception, and respiratory 

development (Table 3) were also found, and these functions are related to 

behavioral stress responses [1,4,51].  

The ataxin 10 gene (ATXN10), annotated in the neuron projection 

development GO_BP, was previously associated with longevity traits in Chinese 

Holstein cattle [52]. Longevity is a productive trait that is affected to some degree 

by the cattle’s temperament, as aggressiveness is an undesirable trait and is a 

culling criterion in American Angus [53]. The ADAM metallopeptidase domain 

10 (ADAM10) gene was already identified as a biomarker for Alzheimer’s disease 

in humans, with functions related to the cleavage amyloid precursors that act 

during the inflammation process of senile plaques [54]. In cattle, ADAM10 was 

associated with tick resistance, with its importance in the inflammation process 

being the most likely reason [55].  

The ventral anterior homeobox 2 (VAX2) gene was annotated for biological 

processes related to visual perception, axonogenesis, and forebrain 

development, which are very important processes in behavioral responses to 

environmental stimuli [1]. An association with fertility-related traits was also 

previously reported for the VAX2 gene in cattle [56]. Beyond visual perception, 

auditive-related biological processes (sensory perception of sound and inner ear 

morphogenesis) were annotated for the gene ATPase H+ transporting V1 subunit 

B1 (ATP6V1B1), indicating that vision and auditory senses are among the main 

functions influencing YT. The animal’s perception of the area around it is 

involved in behavioral responses [1], so that the presence of the handler or other 
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individuals can affect the animal’s response, which can be positive or not 

depending on the interaction. The ATP6V1B1 gene was also previously 

associated with carcass composition traits [57], which makes sense due to other 

biological processes this gene is involved in (e.g., pH regulation, ossification; 

Supplementary Files 6 and 7).  

The face morphogenesis biological process, annotated for the cysteine-rich 

secretory protein LCCL domain-containing 1 (CRISPLD1) gene, was an 

interesting result. Neural crest cells are involved in face morphogenesis by 

generating the craniofacial skeleton, particularly the sensory organs and subsets 

of cranial sensory receptor neurons, and there are common mechanisms for 

building faces, brains, peripheral neurons, and central neural circuits that 

regulate behavioral functions [58]. In addition, the face structure has already 

been cited as a predictor of aggressiveness in humans, with the specific facial 

width-to-height ratio highly correlated with aggressiveness in men [59]. 

However, these associations of face morphogenesis and structure are limited in 

domestic animals, and the only report for the CRISPLD1 gene found in cattle was 

for milk fatty acid traits [60].  

Previous studies have reported face hair whorls (FHW) in cattle to be a 

predictor of cattle temperament [61–63]. In these studies, animals with FHW 

above the eye line were more agitated than the ones with lower FHW; these 

animals escaped faster or displayed aggressive behavior. The association of FHW 

with cattle temperament may also be related to face morphogenesis, which could 

be associated with early tissue development, as the same embryonic origin is 

attributed to the epidermis and the nervous system [64]. Recently, genomic 

regions for FHW in horses were annotated [65], in which, beyond the hair follicle 

growth, they were related to neurological and behavioral functions. Despite the 

phenotypic association of cattle temperament with FHW [61–63], no studies 

underlying the genomic architecture of FHW in cattle were found. 

Different dendritic spine densities were previously associated with 

aggressiveness in rats [66], and the dendrite and dendrite spine morphogenesis 

GO_BP was annotated for the cell cycle-associated protein 1 (CAPRIN1) gene. 

The CAPRIN1 gene was previously enriched for bovine respiratory disease [67]; 

however, studies reporting associations for this gene in cattle are scarce. The 

haploblock that overlapped the CAPRIN1 gene (block_135 position 64 Mb on 

BTA15) also overlapped with 2 QTL for milk fat yield. The fatty acid 2-
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hydroxylase (FA2H) gene was previously associated with carcass traits [68] and 

was functionally annotated to the central and peripheral nervous system myelin 

maintenance GO_BP in our study. Differences in the myelinization were found 

in mice that presented social avoidance behavior (susceptibility to behavioral 

stress), with less social mice having thinner myelin compared to the controls [69]. 

Fat is one of the main components of the myelin layers surrounding the nerves 

and has an important role in the electric transmission across nerve cells [70], and 

the presence of a fatty acid gene may suggest the involvement of fatty acid 

metabolism in its formation and maintenance.  

The sperm flagellar 2 (SPEF2) gene is a well-known gene in cattle because 

of its association with important traits, such as adaptation to heat stress [71], 

fertility [72], and milk production and composition [60]; however, no reports 

related to behavioral traits for this gene were found. The SPEF2 gene was found 

for all scenarios investigated, and beyond the GO_BP related to immune system 

and fertility, the embryonic neurocranium, brain morphogenesis, and 

respiratory system development GO_BP were also functionally annotated. 

Respiration is changed during flight or fight response in animals [73] and 

consistent respiratory alterations were observed in highly aggressive rats, with 

elevated basal respiratory rates denoted for the highly aggressive animals 

compared to controls [74]. Knowledge about alteration of the respiratory rate as 

a function of behavior is limited in cattle.  

The GO_BP and metabolic pathway that the plexin A1 (PLXNA1) gene are 

involved were mainly related to axon guidance and neuron projection. Specific 

neuron projections during aggression were previously described in mice, with 

some periaqueductal gray (PAG) neurons being selective for attack action [75]. 

No behavior or neuron studies reporting associations of the PLXNA1 gene were 

found in cattle; however, this gene was associated to fertility [76] and growth 

traits [77] in cattle. As the PAG brain region is conserved across species [78] and 

plays roles in survival behavior [75], further behavioral studies considering this 

gene in cattle or other species are recommended.  

The social behavior response is affected by the oxytocin signaling pathway 

(OSP) [79], and this KEGG metabolic pathway was annotated for the calcium 

voltage-gated channel auxiliary subunit α 2 delta 3 (CACNA2D3) gene. Reports 

related to OSP and social interactions in cattle are scarce. In cattle, the 

CACNA2D3 gene was previously associated with intramuscular fat [80], which 
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is in accordance with the fact that the MAPK signaling pathway was also 

annotated for this gene and is associated with marbling [81], but no studies 

related to behavior indicators were found. 

The vast diversity of functions found by the genes present in the top regions 

for YT and the previous associations with different sorts of traits may suggest 

pleiotropic effects. This can also be supported by the range of trait classes 

presented by QTL overlapped by the top regions (Figure 11), which were related 

to more than 50 different traits linked to milk production, health, exterior, 

production, and reproduction traits (Supplementary Files 2 and 3). Three QTL 

for milking speed (position 43 Mb on BTA7, and positions 30 and 41 Mb on 

BTA14), an indicator of workability in cattle [82], were overlapped by the top 

regions when NCSNP and haplotypes were fitted in ssGWAS (Supplementary 

File 3). Additionally, for another indicator of behavior in cattle, 5 QTL for length 

of the productive life were found (position 71 Mb on BTA6, positions 21 and 43 

Mb on BTA18, position 47 on BTA20, and position 19 on BTA 24).  

4.5. Use of Different Linkage Disequilibrium Thresolds and Non-Clustered SNPs in the 

ssGWAS 

Many of the genes and QTL would not have been identified without using 

different LD thresholds to create the haplotype blocks or the inclusion of the 

NCSNP. Haplotype-based GWAS using overlapping sliding windows was 

suggested as more powerful than SNP-based or LD-based haplotype GWAS 

(considering low recombination rates within haploblocks, i.e., high LD levels), 

because these would be more efficient for regions with low LD and high 

recombination [83]. Exclusive genes and QTL were found when different LD 

thresholds (0.15, 0.50, and 0.80, which are low, moderate, and high, respectively) 

were used to create the haploblocks, suggesting the LD levels in the regions that 

affect YT are not consistent. Considering the complexity of the genomic 

organization, QTL sizes, and genetic factors experienced by the populations, it is 

unlikely that QTL affecting any trait would follow a specific LD pattern. Using 

haplotypes and NCSNP under the ssGWAS framework with a low, moderate, 

and high LD to create the haploblocks allowed us to find genes and biological 

processes involved in YT that were not reported in previous studies, which used 

only SNPs, for a set of behavioral traits in cattle.  

The LD-block approach considering high LD levels was previously 

suggested to be inefficient for association studies because many individual SNPs 
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would be placed out of the haploblocks [84], and thus could not contribute to 

dissecting the genetic architecture of the trait [35]. Additionally, results from 

genomic predictions using haplotypes not including the NCSNP were worse 

regardless of the level of genetic diversity and heritability of the trait, indicating 

that important genomic regions were not considered without the NCSNP [18]. 

Our results show important genes and QTL for YT would not be considered 

without the inclusion of NCSNP, and using both haplotypes and NCSNP 

accounts for most relevant genes and QTL found based on haplotypes only. Top 

genomic regions in the X chromosome (PAR region) were found only when 

NCSNP were included in the analyses. Two genes (MXRA5 and CD99 in the 

position 138 Mb; Supplementary File 3), three QTL related to metabolic body 

weight (position 136 Mb), and other regions that did not have genes or QTL 

previously annotated (positions 134 and 135 Mb) were found in the X 

chromosome (PAR region) when fitting NCSNP and haplotypes together. This 

finding indicates that further studies including additional markers located in the 

X chromosome are needed, as also suggested by Alvarenga et al. [5]. Thus, 

association studies using LD haplotypes should also include the NCSNP.  

It is important to highlight that the density of the panel used to make the 

haplotype analyses can affect the results, as the amount of QTL variance 

explained tend to be higher with denser haploblocks [85-86]. The precision in the 

estimation of the recombination hotspots also tend to be higher with denser SNP 

panels [87], which can affect the accuracy of haplotype phasing [88]. The 50 K 

SNP panel used in this research was designed to be similar to the Illumina 

BovineSNP50V2 and Illumina BovineSNP50V3 SNP panels, with SNPs  50.6 kb 

apart on average 

(www.illumina.com/Documents/products/datasheets/datasheet_bovine_snp5O.

pdf, accessed on 11 December 2021), presenting SNPs as further apart compared 

to the high-density panel available for cattle (~777 K SNPs). However, as the 

haplotype blocks in cattle are ~70 kb [89], the 50 K panel provides reasonable 

resolution for capturing the extent of LD in the population investigated. 

Nevertheless, further studies using denser SNP panels are also recommended to 

investigate ssGWAS using haplotypes for YT, as well as other economically 

important traits and alternative indicators of cattle temperament. 

4.6. Future Studies 

https://www.illumina.com/Documents/products/datasheets/datasheet_bovine_snp5O.pdf
https://www.illumina.com/Documents/products/datasheets/datasheet_bovine_snp5O.pdf
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Additional research should be conducted next to further explore the results 

obtained in this current study. For instance, it would be valuable to repeat these 

analyses based on whole-genome sequence data in North American Angus cattle 

as well as in other worldwide Angus cattle populations. The key candidate genes 

should also be validated in vitro or based on gene editing and gene knock-out 

experiments. Furthermore, additional polymorphisms located in the candidate 

genes identified in this study could be added to existing SNP panels to increase 

the accuracy of genomic predictions for docility. From a practical point of view, 

these results obtained could be incorporated in current genomic prediction 

models for YT in North American Angus. We are also evaluating the genetic 

trends of docility using the traditional and genomic estimated breeding values 

for YT and correlated responses in other important traits. Another area of 

research in our research group is the definition of novel indicators of cattle 

temperament, especially based on data derived from sensors and other precision 

technologies. 

5. Conclusions 

Yearling temperament in cattle is a highly polygenic trait, with genes and 

QTL broadly distributed across the whole genome. Association studies using 

LD-based haplotypes should include the non-LD-clustered SNPs, as well as 

different thresholds to increase the likelihood of finding the genomic regions 

affecting the phenotype of interest. The key candidate genes ATXN10, ADAM10, 

VAX2, ATP6V1B1, CRISPLD1, CAPRIN1, FA2H, SPEF2, PLXNA1, and 

CACNA2D3 are involved in important biological processes and metabolic 

pathways related to behavioral traits, social interactions, and aggressiveness. 

Further studies investigating the role of these genes in behavioral traits are 

recommended.  
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Abstract 

Rambouillet sheep are commonly raised in extensive grazing systems in the US, mainly for 

wool and meat production. Genomic evaluations in US sheep breeds, including Rambouillet, 

are still incipient. Therefore, we aimed to evaluate the feasibility of performing genomic 

prediction of breeding values for various traits in Rambouillet sheep based on single nucleotide 

polymorphisms (SNP) or haplotypes (fitted as pseudo-SNP) under a single-step GBLUP 

approach. Approximately 5K to 28K records for birth weight (BWT), post-weaning weight 

(PWT), yearling weight (YWT), yearling fiber diameter (YFD), yearling greasy fleece weight 

(YGFW), and number of lambs born (NLB), were used for this study. A total of 741 individuals 

were genotyped using a moderate (50K; n = 677) or high (600K; n = 64) density SNP panel, in 

which 32K SNP in common between the two SNP panels (after genotypic quality control) were 

used for further analyses. Single-step genomic predictions using SNP (H-BLUP) or haplotypes 

(HAP-BLUP) from blocks with different linkage disequilibrium (LD) thresholds (0.15, 0.35, 

0.50, 0.65, and 0.80) were evaluated. We also considered genomic weights (alpha parameter) 

equal to 0.95 or 0.50 when constructing the genomic relationship matrix used to predict the 

genomic enhanced estimated breeding values (GEBV). The GEBV were compared to the 

estimated breeding values (EBV) obtained from traditional pedigree-based evaluations (A-

BLUP). The mean theoretical accuracy ranged from 0.499 (A-BLUP for PWT) to 0.795 (HAP-

BLUP using haplotypes from blocks with LD threshold of 0.35 and alpha equal to 0.95 for 

YFD). The prediction accuracies ranged from 0.143 (A-BLUP for PWT) to 0.330 (A-BLUP for 

YGFW) while the prediction bias ranged from -0.104 (H-BLUP for PWT) to 0.087 (HAP-

BLUP using haplotypes from blocks with LD threshold of 0.15 and alpha equal to 0.95 for 

YGFW). The GEBV dispersion ranged from 0.428 (A-BLUP for PWT) to 1.035 (A-BLUP for 

YGDW). Using genomic information from SNP or haplotypes provided similar or higher 

prediction and theoretical accuracies and reduced the dispersion of the GEBV for body weight, 
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wool, and reproductive traits in Rambouillet sheep. However, there was no clear improvements 

in the prediction bias when compared to pedigree-based predictions. The next step will be to 

enlarge the training populations for this breed to increase the benefits of genomic predictions. 

 

Keywords: BLUP, genomically enhanced estimated breeding values, haplotype prediction, 

linkage disequilibrium, small ruminants, ssGBLUP  

 

1. Introduction 

The global demand for products from small ruminants is increasing. Further scientific 

innovation, with its greater application through increased education and training, is needed to 

meet this demand (Mazinani & Rude, 2020). Rambouillet sheep are commonly used in 

extensive grazing systems. They produce heavy fleeces with fine fiber diameter (Thorne et al., 

2021). Yet, as a dual-purpose breed, body weight and reproductive traits are also of economic 

importance in this breed (Thorne et al., 2021). Estimated breeding values (EBV) for these sets 

of traits have been generated and shared with US sheep producers through the National Sheep 

Improvement Program (NSIP; Notter, 1998). However, no genomic estimated breeding values 

(GEBV) have been calculated for Rambouillet sheep yet. 

The original application of the mixed model equations (MME) in animal genetics was 

to obtain solutions for fixed and random effects while avoiding the need to invert the full 

covariance matrix of the data (Henderson, 1950).  In this context, the MME were used to obtain 

Best Linear Unbiased Prediction (BLUP) of EBV for selection candidates, based on the 

relatedness among individuals from pedigree (Henderson, 1984). However, with the availability 

of large-scale genomic information, the pedigree relationship matrix (𝐀) can be replaced or 

combined with the genomic relationship matrix (𝐆) to predict GEBV (Aguilar et al., 2010). The 

GEBV can be more accurate than EBV especially for young animals (not yet recorded for the 
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traits of interest), and for lowly heritable and sex-limited traits (Meuwissen et al., 2001). 

Furthermore, GEBV can provide advantages for the evaluation of difficult- or expensive-to-

measure traits (Brito et al., 2020; Thorne et al., 2021). 

The single-step genomic BLUP (ssGBLUP; Legarra et al., 2009; Christensen & Lund, 

2010) is a method that simultaneously includes both genotyped and non-genotyped individuals 

in the analysis to obtain GEBV for all individuals by combining the genomic and pedigree 

information. The ssGBLUP is more compatible with current breeding programs (where not all 

breeding individuals are genotyped) and provides similar or better results than other methods 

(Legarra et al., 2014; Guarini et al., 2018). However, an important consideration when 

implementing the ssGBLUP is how to weight the genomic and pedigree information (McMillan 

& Swan, 2017; Meyer et al., 2018).  This conundrum arises because as 𝐆 computes the 

relationships at the genomic marker level, it can be difficult to invert, may not be on the same 

scale as the 𝐀, and may not account for residual polygenic effects (Meyer et al., 2018). 

To help during the inversion process, and to account for residual polygenic effects, two 

parameters, 𝛼 and β (with 𝛼 = 0,… ,1 and β = 1 − 𝛼), are commonly used to include a 

proportion of 𝐀 in the 𝐆 that is used in the genomic evaluation (Meyer et al., 2018). Values 

between 0.95 to 0.99 are common choices to weight 𝐆 (McMillan & Swan, 2017). However, 

some authors (McMillan & Swan, 2017; Gao et al., 2012) showed that different 𝛼 can affect 

the accuracy and bias of the single-step genomic predictions. McMillian and Swan (2017) used 

𝛼 = 0.50 to place equal emphasis on the pedigree and genomic relationships for animals when 

both were recorded. Defining the appropriate value for these parameters is therefore important 

as they may differ even for different traits in the same population (Gao et al., 2012).  

The 𝐆 matrix used in the ssGBLUP can also be computed based on different methods. 

Fitting single nucleotide polymorphisms (SNP) has been the standard method used in genomic 

analyses; however, haplotypes can also be used for both genomic prediction (Teissier et al., 
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2020; Feitosa et al., 2020; Araujo et al., 2021) and genome-wide association (Bovo et al., 2021; 

Feitosa et al., 2021; Araujo et al., 2022) studies. Haplotypes are the alleles from a set of adjacent 

loci (sizable regions called haplotype blocks or haploblocks) expected to be inherited together 

due to lower recombination (Gabriel et al., 2002). Haplotypes are also expected to be in higher 

linkage disequilibrium (LD) with the quantitative trait loci (QTL) than the single SNP (Calus 

et al., 2008) and capture epistatic effects (Hess et al., 2017; Jiang et al., 2018), which could 

result in higher accuracies and lower bias in the  genomic predictions (Calus et al., 2008; Araujo 

et al., 2021). 

Araujo et al. (2021) hypothesized that fitting haplotypes in genomic predictions could 

outperform the use of SNP in populations with high effective population size (Ne) because it 

would better capture the complex interactions within haploblocks; however, those authors did 

not simulated epistasis and recommended new studies in such populations. Sheep is a species 

in which moderate to high Ne are common in some commercial populations (Kijas et al., 2012; 

Brito et al., 2017a) with predictions of GEBV based on haplotypes scarce (Araujo et al., 2021). 

Therefore, we aimed to evaluate the GEBV accuracies, bias, dispersion, and individual 

theoretical accuracies (TA) using ssGBLUP fitting SNP or haplotypes for body weight, wool, 

and reproductive traits in Rambouillet sheep. We also evaluated the effect of constructing the 

haplotypes with different LD thresholds and 𝛼 values when forming the 𝐆 matrix. Finally, 

recommendations for future steps for the implementation of genomic evaluations in 

Rambouillet sheep were also provided. 

 

2. Material and Methods 

No ethical review and approval were needed for this study because all datasets used 

were provided by commercial breeding operations. 
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2.1 Phenotypic and pedigree data 

The phenotypic datasets were provided by the NSIP (Ames, IA, USA), which included 

three body weight traits [birth weight (BWT), post-weaning weight (PWT), and yearling weight 

(YWT)], two wool traits [yearling fiber diameter (YFD) and yearling greasy fleece weight 

(YGFW)] and one reproductive trait [number of lambs born (NLB)] as described in Table 1. 

The BWT was the lamb weight recorded within 24 h after birth, while PWT and YWT were the 

body weights recorded at five to 10 (151 to 304 days) and 10 to 14 months of age, respectively. 

The wool traits were measured at yearling age (10 to 14 months). The pedigree dataset had 

36,297 individuals born from 1985 to 2021, spanning up to 15 generations from animals with 

phenotypic records. 

The phenotypic datasets used to make the genetic evaluation for the body weight and 

wool traits were processed previously by the NSIP, which provided pre-adjusted phenotypes 

(http://nsip.org/wp-content/uploads/2015/04/Lambplan-TC-Report-Notter.pdf). Briefly, the 

pre-adjustment considered birth and rearing type (fixed levels as a multiplicative adjustment), 

and age of dam at recording (fixed covariates as quadratic and fixed regressions, respectively). 

No pre-adjustments were done for NLB. The data underwent quality control (QC) with 

observations deviating more than three standard deviations from the mean removed from 

further analyses. 

Contemporary groups (CG) were created by concatenating flock, year, season, 

management group, sex, recording date, and 70-day age groups to split lambing (birth) dates 

into 70 days periods, for PWT, YWT, YFD, and YGFW. For BWT, the CG included all the 

effects previously mentioned for body weight and wool traits, excluding recording date; 35- 

rather than 70-day age group were also used. The CG for the NLB were created considering 

ewe’s flock, birth year, season, management group, and parturition number (e.g., ewe’s first, 

second or third lambing). The pre-adjusted phenotypes for body weight and wool traits and the 

http://nsip.org/wp-content/uploads/2015/04/Lambplan-TC-Report-Notter.pdf
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NLB phenotypes were then adjusted for the CG effect, so that the phenotypes analyzed—

henceforth referred to as corrected phenotypes—accounted for all systematic environmental 

effects considered in the NSIP genetic evaluations. As a final QC step, CG with less than three 

animals and with no phenotypic variability within CG were removed. 

 

Table 1. Description of the datasets used for the genetic and genomic predictions of birth weight 

(BWT), post-weaning body weight (PWT), yearling body weight (YWT), yearling fiber 

diameter (YFD), yearling greasy fleece weight (YGFW), and number of lambs born (NLB) in 

Rambouillet sheep. 

Dataset Variable1 

Trait 

BWT 

(kg) 

PWT 

(kg) 

YWT 

(kg) 

YFD 

(μm) 

YGFW 

(kg) 

NLB 

(count) 

Complete 

Average 4.86 35.36 59.99 18.87 3.04 1.71 

SD 1.02 7.78 15.28 1.67 0.81 0.59 

Individuals (n) 28,317 22,781 5,653 9,586 11,542 6,846 

Records (n) 28,317 22,781 5,653 9,586 11,542 15,904 

CG (n) 427 461 110 195 210 445 

Genotypes (n) 587 632 442 529 502 242 

Partial 

Average 4.77 35.01 58.03 18,92 2.99 1.79 

SD 0.98 7.12 13.54 1.57 0.72 0.59 

Individuals (n) 22,115 17,118 3,657 6,808 9,055 5,407 

Records (n) 22,115 17,118 3,657 6,808 9,055 13,790 

CG (n) 404 402 101 175 198 411 

Genotypes n) 469 456 341 426 402 138 

n focal 118 176 101 103 100 104 
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1Standard deviation (SD); number of phenotyped individuals (Individuals), records (Records), 

contemporary groups (CG), and genotypes (Genotypes) included in the whole and partial 

datasets (after quality control); and number of focal individuals (n focal). All genotyped and 

focal animals had own phenotypes or progeny with phenotypes. The whole data set contained 

all corrected phenotypes after quality control and the partial data set was a subset of the whole 

data truncated by the birth year of the focal individuals (young selection candidates used to 

compare the methods evaluated). 

 

2.2 Genotypic data 

Samples from 677 and 64 animals were genotyped using the GeneSeek Genomic 

Profiler Ovine 50K array (Neogen Corporation, Lansing, MI, USA) (52,260 SNP) and 

OvineHD BeadChips (Illumina Inc., San Diego, CA, USA) (606,006 SNP) SNP panels by 

Neogen (GeneSeek, A Neogen Company, Lincoln, NE, USA). These individuals were chosen 

to be genotyped based on pedigree-based relatedness to try to capture the genetic diversity as 

much possible in animals with DNA samples, coming from nine representative NSIP 

Rambouillet flocks. As an additional criterion, animals with phenotypic information, either on 

themselves or on their progeny, for most traits analyzed were prioritized for genotyping. 

Approximately 35K (35,105) autosomal SNP were in common between the two panels 

and were used in the QC. The QC for the genotypic data was done using the PLINK 1.9 software 

(Purcell et al., 2007), and markers with MAF < 0.05, call rate < 0.90, extreme departure from 

Hardy-Weinberg equilibrium (P < 10-8), located on non-autosomal chromosomes, and 

duplicated SNP were removed. Samples with call rate < 0.90 were also removed. A total of 

32,584 SNP and 722 samples remained for further analyses. 

 

2.3 Haplotype construction  
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The SNP genotypes for all samples were phased using the FImpute v.3.0 software 

(Sargolzaei et al., 2014) to infer the parental inheritance (i.e., which allele came from which 

parent), before creating the haplotype blocks. LD haploblocks were constructed using the 𝑟2 

metric (Hill and Robertson, 1968) with the thresholds of 0.15, 0.35, 0.50, 0.65, and 0.80 using 

the Big-LD approach (Kim et al., 2018). The “gpart” package (Kim et al., 2019) implemented 

in R (R Core Team, 2020) was used to build the haploblocks. 

 

2.4 Genetic evaluation 

2.4.1 Pedigree-based predictions 

Three linear mixed models for the pedigree based BLUP (A-BLUP) were used in this 

study, which are defined as follow: 

𝐲𝟏 = 𝟏′μ + 𝐙𝐮 + 𝐞 (1) 

𝐲𝟐 = 𝟏′μ + 𝐙𝐮 + 𝐖𝐩 + 𝐞 (2) 

𝐲𝟑 = 𝟏′μ + 𝐙𝐮 + 𝐙𝟐𝐦 + 𝐒𝐪 + 𝐞 (3) 

where the model (1) is an additive genetic model with 𝐲𝟏 representing a vector of single 

corrected phenotypic records, μ is the overall mean, 𝐮 is the random direct additive genetic 

effect, and 𝐞 is the random residual. The model (2) is a repeatability model, in which 𝐩 is the 

random permanent environment effect, 𝐲𝟐 contains the repeated corrected phenotypic records, 

and the other vectors are the same as in model (1). The model (3) also includes the random 

maternal additive genetic and maternal permanent environment effects, 𝐦 and 𝐪, respectively. 

The 𝟏′ is a vector of ones used to calculate the overall mean and 𝐙, 𝐖, 𝐙𝟐, and 𝐒 are the 

incidence matrices that relates the corrected phenotypic records to the random direct additive 

genetic, permanent environment, maternal additive genetic, and maternal permanent 

environment effects, respectively. The random effects for the above models were assumed to 

be normally distributed with (co)variance structures as follows: 
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 Model (1): 𝑉𝑎𝑟 [
𝐮
𝐞
] = [

𝐀𝜎𝐮
2 0

0 𝐈𝜎𝐞
2] (4) 

 Model (2): 𝑉𝑎𝑟 [
𝐮
𝐩
𝐞
] = [

𝐀𝜎𝐮
2 0 0

0 𝐈𝜎𝐩
2 0

0 0 𝐈𝜎𝐞
2

] (5) 

 Model (3): 𝑉𝑎𝑟 [

𝐮
𝐦
𝐪
𝐞

] =

[
 
 
 
 
𝐀𝜎𝐮

2 0 0 0

0 𝐀𝜎𝐦
2 0 0

0 0 𝐈𝜎𝐪
2 0

0 0 0 𝐈𝜎𝐞
2]
 
 
 
 

 (6) 

where model (1) was used to make the EBV prediction for the YFD, model (2) for NLB, and 

model (3) for BWT, PWT, YWT, and YGFW. 

The BLUPf90 software (Misztal et al., 2018) was used to predict EBV assuming the 

variance components were known (Table 2). To be consistent with the national genetic 

evaluation underway in Rambouillet sheep, the models fitted and the variance components used 

to predict the EBV were provided by NSIP. 

  

2.4.2 Single-step genomic BLUP using SNP 

The corrected phenotypes, models, and variance components used to predict the GEBV 

under the single-step genomic BLUP using SNP (H-BLUP) approach were similar to the ones 

used in A-BLUP, except for the inclusion of genomic relationships from the genotyped samples. 

In the assumptions of the H-BLUP, the 𝐲 vector had corrected phenotypes for genotyped and 

non-genotyped animals and 𝐮 ~𝑁(0,𝐇𝜎𝐮
2). 𝐇 is the matrix that combines the pedigree and the 

genomic relationship matrices (Legarra et al., 2009), with its inverse computed as follows 

(Aguilar et al., 2010): 

 𝐇−𝟏 = 𝐀−1 + [
0 0
0 𝜏(𝛼𝐆 +  β𝐀𝟐𝟐)

−𝟏 − ω𝐀𝟐𝟐
−𝟏]  (7) 
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Table 2. Variance components and genetic parameters used to predict the estimated breeding 

values for birth weight (BWT), post-weaning body weight (PWT), yearling body weight 

(YWT), yearling fiber diameter (YFD), yearling greasy fleece weight (YGFW), and number of 

lambs born (NLB) in Rambouillet sheep. 

Parameter1 BWT PWT YWT YFD YGFW NLB 

𝜎𝐮
2 0.085 3.211 15.402 1.311 0.122 0.025 

𝜎𝐩
2 - - - - - 0.009 

𝜎𝐦
2  0.091 1.926 1.777 - 0.013 - 

𝜎𝐪
2 0.061 1.926 1.777 - 0.013 - 

𝜎𝐞
2 0.372 25.046 40.283 0.989 0.181 0.250 

𝜎𝑝
2 0.610 32.110 59.240 2.300 0.330 0.284 

ℎ2 0.140 0.100 0.260 0.570 0.370 0.090 

𝑝2 - - - - - 0.030 

ℎ𝑚
2  0.150 0.060 0.030 - 0.040 - 

𝑐2 0.100 0.060 0.030 - 0.040 - 

1 𝜎𝐮
2 = additive genetic variance, 𝜎𝐩

2 = permanent environment variance associated with repeated 

records, 𝜎𝐦
2 = maternal additive genetic variance, 𝜎𝐪

2 = maternal permanent environment 

variance,  𝜎𝒆
2 = residual variance, 𝜎𝑝

2 =  phenotypic variance, ℎ2 = heritability for the direct 

additive genetic effect, 𝑝2 = repeatability, ℎ𝑚
2  = heritability for the maternal additive genetic 

effect, 𝑐2 = fraction of the phenotypic variance explained by the maternal permanent 

environment effect. 

 

where 𝐀−1 is the inverse of the pedigree relationship matrix, 𝐀𝟐𝟐 and 𝐀𝟐𝟐
−𝟏 are the pedigree 

relationship matrix for the genotyped animals and its inverse, respectively, and 𝐆 is the genomic 

relationship matrix calculated as proposed by VanRaden (2008): 
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 𝐆 =
𝐌𝐌′

2∑𝑝𝑖(1−𝑝𝑖)
 (8) 

where 𝐌 has the dimension of n genotyped animals by m SNP markers (coded as 0, 1, or 2 for 

the absence, presence of one copy, or presence of two copies of the reference allele, 

respectively) and is centered based on twice of the allelic frequencies (𝑝𝑖; 1 − 𝑝𝑖). The 

PREGSf90 software (Misztal et al., 2018) was used to create the 𝐇−𝟏 matrix, with 𝜏 and ω 

parameters assumed as the default values (1.0). Different values of 𝛼 were used to evaluate the 

impact of increasing the proportion of 𝐀𝟐𝟐 on 𝐆, with 𝛼 = 0.95 and 0.50 (β = 0.05 and 0.50, 

respectively), in which the former is the default value in the PREGSf90 software and the later 

was suggested as the choice in Terminal Sire sheep populations (McMillan & Swan, 2017). 

  

2.4.3 Single-step genomic BLUP using haplotypes 

The model and assumptions used in the HAP-BLUP approach were similar to those 

described for H-BLUP. However, the 𝐆 used in the (𝛼𝐆 +  β𝐀𝟐𝟐)
−𝟏 component was 

constructed using non-LD-clustered SNP (NCSNP) and pseudo-SNP (ps-SNP). A ps-SNP 

corresponds to one of the unique haplotype alleles present within a haploblock, coded as 0, 1, 

or 2 to account for the number of copies of the reference haplotype allele, similar to Araujo et 

al. (2021). As a haploblock can be multi allelic, several ps-SNP can be created from a 

haploblock. The ps-SNP were subjected to the same QC criteria as the SNP before their use for 

genomic prediction. The number of NCSNP plus ps-SNP before QC ranged between 33,922 

and 44,695 with the LD thresholds of 0.80 and 0.15, respectively, while the number of NCSNP 

plus ps-SNP after QC (markers used in the haplotype predictions) ranged from 32,649 to 39,787 

with these same LD thresholds (Supplementary File 1). All the scenarios regarding the different 

combinations of 𝛼 and β parameters described for H-GBLUP were also tested in the HAP-

BLUP method. 
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2.5 Comparing genetic and genomic predictions 

The whole and partial datasets used to compare the genetic and genomic predictions 

(Legarra & Reverter, 2018) for each trait (Table 1) were defined separately based on time 

thresholds considering the birth date of the genotyped animals as the reference. The whole 

datasets included all corrected phenotypic records and genotyped individuals with corrected  

phenotypes on itself or in its progeny As the number of genotyped individuals was small, the 

division into partial datasets considered the following two criteria: 1) at least 100 genotyped 

individuals with average EBV accuracy higher than 0.50 as focal individuals (selection 

candidates with masked corrected phenotypes in itself and in its progeny) were kept; and 2) at 

least 20% of the genotyped individuals as focal individuals were kept. 

The performance of genetic and genomic predictions was evaluated using the linear 

regression (LR) method as described by Legarra and Reverter (2018). The LR method provides 

a series of statistics derived from the comparison of genetic evaluations using the whole and 

partial datasets, resulting in easy-to-use methods to evaluate the reliability of the predictions 

(Legarra & Reverter, 2018). The LR statistics obtained were: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = √
𝑐𝑜𝑣((𝐺)𝐸𝐵𝑉𝑊,(𝐺)𝐸𝐵𝑉𝑃)

(1−𝐹)𝜎𝐮𝒅
2  (9) 

 𝐵𝑖𝑎𝑠 = 𝑎𝑣𝑒(𝐮𝑃̂) − 𝑎𝑣𝑒(𝐮𝑤̂) (10) 

 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = (
𝑐𝑜𝑣((𝐺)𝐸𝐵𝑉𝑊,(𝐺)𝐸𝐵𝑉𝑃)

𝑣𝑎𝑟((𝐺)𝐸𝐵𝑉𝑃)
) − 1 (11) 

where 𝑐𝑜𝑣((𝐺)𝐸𝐵𝑉𝑊, (𝐺)𝐸𝐵𝑉𝑃) is the covariance between the GEBV or EBV in whole 

((𝐺)𝐸𝐵𝑉𝑊) and partial ((𝐺)𝐸𝐵𝑉𝑃) datasets, 𝐹̅ is the average inbreeding, 𝑎𝑣𝑒() represent the 

arithmetic average function, 𝐮𝑤̂ and 𝐮𝑃̂ are the predicted GEBV or EBV in the whole and partial 

datasets, respectively, and 𝑣𝑎𝑟((𝐺)𝐸𝐵𝑉𝑃) is the variance of the GEBV or EBV. The other 

components were previously described. 
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In addition to the LR statistics, the individual theoretical accuracies (TA) were 

calculated for the focal individuals according to Van Vleck (1993): 

 𝑇𝐴 = √1 −
𝑠𝑒𝑖

2

(1+𝑓𝑖)𝜎𝐮
2 (12) 

were 𝑇𝐴 is the individual theoretical accuracies, 𝑠𝑒𝑖
2 is the square of the GEBV or EBV 

standard error for the individual i, 𝑓𝑖 is the inbreeding coefficient for the individual i, and the 

other variables were previously described. 

 

2.6 Evaluated scenarios 

The scenarios consisted of combinations of 1) A-BLUP, 2) H-BLUP with 𝛼 = 0.95 and 

0.50 to construct 𝐆, and 3) HAP-BLUP using ps-SNP from different LD thresholds (0.15, 0.35, 

0.50, 0.65, and 0.80) also with 𝛼 = 0.95 and 0.50 to construct 𝐆. In total, 13 scenarios were 

evaluated for each of the six traits, resulting in 78 analyses.  

 

3. Results 

3.1 Accuracies 

The prediction accuracies for body weight, wool, and NLB traits ranged between 0.143 

(A-BLUP for PWT) to 0.330 (A-BLUP for YGFW). The lowest and highest prediction 

accuracies were observed for NLB and wool (both YFD and YGFW) traits, respectively. 

Similar prediction accuracies were observed for the HAP-BLUP across different LD thresholds, 

regardless of the 𝛼 value and trait evaluated. We, therefore, only present the results for the 

HAP-BLUP considering the LD threshold of 0.50 (HAP-BLUP-LD_0.50) to compare the 

predictions between pedigree, SNP, and haplotype-based methods for all traits (Figure 1). 
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Figure 1. Prediction accuracies for birth weight (BWT), post-weaning weight (PWT), yearling 

weight (YWT), yearling fiber diameter (YFD), yearling greasy fleece weight (YGFW), and 

number of lambs born (NLB) in Rambouillet sheep using pedigree BLUP (A-BLUP), SNP-

based single-step GBLUP (H-BLUP), and haplotype-based single-step GBLUP fitting pseudo-

haplotypes from blocks with LD threshold of 0.50 (HAP-BLUP-LD_0.50). Different 𝛼 values 

(0.95 or 0.50) were used to create the genomic relationship matrices.  

 

Using genomic information provided similar or higher GEBV prediction accuracies 

compared to EBVs. An increase of ~41% (~0.06), ~62% (~0.12), ~8% (~0.02), and ~37% 

(~0.05) in the GEBV prediction accuracies was observed for the PWT, YWT, YFD, and NLB, 

respectively, when using 𝛼 equal to 0.95. Using an 𝛼 of 0.50 generally resulted in half of the 

increase in the prediction accuracy compared to 0.95. No gains in GEBV accuracy were 

observed for BWT and YGFW by using genomic information. The increase in the accuracy 
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using the SNP- and haplotype-based models were similar, with differences smaller than 1% for 

all traits. 

 

3.2 Bias 

The prediction bias ranged between -0.104 (H-BLUP for PWT) and 0.087 (HAP-BLUP 

using haplotypes from blocks with LD threshold of 0.15 and 𝛼 of 0.95 for YGFW 

(Supplementary File 2). Different from what was observed for the GEBV accuracies, the 

predictions for NLB were in general less biased than the other traits while those for PWT were 

the most biased. The prediction bias for the haplotype-based methods was similar across LD 

thresholds (used to create the haploblocks) and, thus, only the HAP-BLUP-LD_0.50 were 

presented for comparison purposes (Figure 2).  

Incorporating genomic information in the analyses resulted in similar or more bias when 

compared to the pedigree-based prediction. Alpha equal to 0.95 tended to reduce the bias for 

BWT and YWT, while the opposite was observed for the other traits (i.e., using 𝛼 = 0.50 

reduced the prediction bias for the other traits). 

 

3.3 Dispersion 

The GEBVs dispersion ranged from -0.572 (A-BLUP for PWT) to 0.035 (A-BLUP for 

YGDW) (Supplementary File 2). The dispersion was closer to zero (expected value for this 

statistic under no dispersion) for YGFW while it was more distant from and typical below one 

for BWT and PWT indicating GEBV were overestimated. GEBV predictions using haplotypes 

from blocks with different LD thresholds resulted in similar dispersion of the GEBV. Therefore, 

the HAP-BLUP-LD_0.50 scenario was also used to represent the haplotype-based methods to 

compare with A-BLUP and H-BLUP (Figure 3). 
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Figure 2. Prediction bias for birth weight (BWT), post-weaning weight (PWT), yearling weight 

(YWT), yearling fiber diameter (YFD), yearling greasy fleece weight (YGFW), and number of 

lambs born (NLR) in Rambouillet sheep using pedigree BLUP (A-BLUP), SNP-based single-

step GBLUP (H-BLUP), and haplotype-based single-step GBLUP using haplotypes from 

blocks with LD threshold of 0.50 (HAP-BLUP-LD_0.50). Different 𝛼 values (0.95 or 0.50) 

were used to create the genomic relationship matrices. 

 

A dispersion of -0.29, -0.16, and -0.35 was observed for PWT, YWT, and NLB, 

respectively, using H-BLUP and HAP-BLUP-LD_0.50 with 𝛼 of 0.95. Those values were 

closer to zero than when using A-BLUP (-0.57, -0.35, and -0.39, respectively), showing reduced 

dispersion for genomic based models. Pedigree-based models presented similar or lower 

dispersion for BWT and wool traits. The dispersion with H-BLUP and HAP-BLUP-LD_0.50 

showed similar results regardless of the 𝛼 values. Alpha equal to 0.95 tended to present better 
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dispersion for PWT, YWT, and NLB compared to 0.50, while the opposite was observed for 

the other traits.  

 

 

Figure 3. Dispersion of the GEBVs for birth weight (BWT), post-weaning weight (PWT), 

yearling weight (YWT), yearling fiber diameter (YFD), yearling greasy fleece weight (YGFW), 

and number of lambs born (NLR) in Rambouillet sheep using pedigree BLUP (A-BLUP), SNP-

based single-step GBLUP (H-BLUP), and haplotype-based single-step GBLUP using 

haplotypes from blocks with LD threshold of 0.50 (HAP-BLUP-LD_0.50). Different 𝛼 values 

(0.95 or 0.50) were used to create the genomic relationship matrices. 

 

3.4 Theoretical accuracy  

The mean TA ranged from 0.499 (A-BLUP for PWT) to 0.795 (HAP-BLUP using 

haplotypes from blocks with LD threshold of 0.35 and alpha equal to 0.95 for YFD) 

(Supplementary File 2). Considering all traits, the mean TA was 0.631 (0.085) and TA values 
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were higher for YFD and lower for PWT. Results from the haplotype-based methods had 

similar mean TA regardless of the LD threshold used to construct the haploblocks for all traits. 

The HAP-BLUP-LD_0.50 was, therefore, again used to represent the HAP-BLUP methods 

(Figure 4). 

 

 

Figure 4. Mean theoretical accuracies for birth weight (BWT), post-weaning weight (PWT), 

yearling weight (YWT), yearling fiber diameter (YFD), yearling greasy fleece weight (YGFW), 

and number of lambs born (NLR) in Rambouillet sheep using pedigree BLUP (A-BLUP), SNP-

based single-step GBLUP (H-BLUP), and haplotype-based single-step GBLUP using 

haplotypes from blocks with LD threshold of 0.50 (HAP-BLUP-LD_0.50). Different 𝛼 values 

(0.95 or 0.50) were used to create the genomic relationship matrices. 

 

The genomic information tended to improve the mean TA for all traits, with increases 

up to ~7% (~0.04), ~9% (~0.05), ~4% (~0.03), ~3% (~0.02), ~5% (~0.03), and ~6% (~0.04) 
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for BWT, PWT, YWT, YFD, YGFW, and NLB, respectively, using H-BLUP and HAP-BLUP-

LD_0.50 with 𝛼 of 0.95. Negligible difference (less than 1%) was observed in the increase of 

the mean TA between H-BLUP and HAP-BLUP-LD_0.50 with 𝛼 of 0.95. Using 𝛼 equal to 

0.50 resulted in the smallest increase in the mean TA (less than 2%) with both SNP- and 

haplotype-based methods for all traits. At the individual level, the TA using H-BLUP with 𝛼 of 

0.95 were higher compared to A-BLUP for the younger individuals and those with no 

phenotypic information (sires and dams with genotyped progeny) in the partial datasets for all 

traits (Figure 5).  

 

 

Figure 5. Theoretical accuracies for the genomic estimated breeding values using SNP 

(TA_GEBV) and estimated breeding values (TA_EBV) per genotyped individuals for birth 

weight (BWT), post-weaning weight (PWT), yearling weight (YWT), yearling fiber diameter 

(YFD), yearling greasy fleece weight (YGFW), and number of lambs born (NLR). The 

TA_GEBV and TA_EBV were obtained using SNP in the single-step GBLUP (H-BLUP) with 

alpha equal to 0.95 and pedigree-based BLUP (A-BLUP), respectively. The individuals were 

sorted by birth date, so that the youngest individuals are in the right side of each plot. 
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4. Discussion 

Genomic selection is the state-of-the-art in modern sheep breeding programs. Here we 

present the first results of genomic predictions for body weight, wool, and reproductive traits 

in North American Rambouillet sheep. We performed single-step genomic predictions fitting 

SNP or haplotypes to create the genomic relationship matrices used to compute GEBV. Despite 

the small dataset, promising results were obtained, which can be used as a starting point for the 

implementation of genomic selection in Rambouillet sheep as well as in other sheep 

populations. 

 

4.1 Genetic and genomic prediction results  

The accuracy of genomic predictions relies mainly on the trait heritability, LD between 

SNP and QTL (Meuwissen et al., 2001), population structure, and genetic diversity of the 

population (Daetwyler et al., 2012). For Rambouillet sheep, the prediction accuracies for the 

pedigree- and genomic-based models followed the expected pattern in being higher for more 

heritable traits (Table 1; Figure 1). However, the smallest (~8%) differences between the 

pedigree- and genomic-based prediction accuracies were observed for YFD, which was the trait 

with the highest heritability (0.57), in comparison to NLB (~37%), which was the trait with 

lowest heritability (0.09). 

Despite the expectation of the theoretical accuracies of genomic predictions to be higher 

for traits with higher heritability (Meuwissen et al., 2001), benefits of using GEBV are expected 

to be higher for traits with low heritability, sex limited, hard-to-measure, and recorded late in 

life, especially in sheep (Brito et al., 2017b; Brown et al., 2018). In this context, given that the 

assumptions for the MME (Henderson, 1984) are met (e.g., polygenic architecture, deep and 

accurate pedigree data, large number of phenotypic records, no preselection), the EBV are 
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expected to be BLUP and predict the unknown true breeding values well. In other words, the 

prediction accuracies using A-BLUP for highly heritable traits where individuals and/or their 

progeny have phenotypes are expected to be high. 

As the genotyped cohort used in this study is the first official attempt to create a training 

population for genomic evaluations of Rambouillet sheep, the genotyped individuals included 

key ancestors and other selected animals with phenotypes or representative progeny with 

phenotypes for the traits evaluated. In this case, the EBV for those individuals can be well 

estimated, especially for YFD and YGFW (higher heritabilities; Table 2), which showed small 

and negligible increase in the prediction accuracy for the genomic- compared to pedigree-based 

models. For such highly heritable traits, using GEBV would still be more important to select 

breeding candidates at a younger age, i.e., measured only at yearling age. The substantial 

increase in the prediction accuracy for PWT, YWT, and NLB (higher than ~37%) shows that 

greater genetic gains can be achieved for these traits by including genomic information, as the 

accuracy is one of the main components of the selection response (Falconer & Mackay, 1996). 

The genomic prediction accuracies observed in our study were within the range for most 

of the economic traits in sheep, which is between 0.20 and 0.50 according to Brown et al. 

(2018), especially when using 𝛼 of 0.95 to construct the G matrix. Oliveira et al. (2021) 

observed prediction accuracies for BWT ranging from 0.06 to 0.13 using H-BLUP for 

Norwegian White and New Zealand Composite sheep populations. Unlike what was observed 

in the current study, Moghaddar et al. (2019) showed accuracies for genomic predictions 

ranging between 0.40 to 0.60 for PWT, 0.30 to 0.40 for yearling clean fleece weight, and 0.30 

to 050 for YFD using BayesR and GBLUP for purebred Merino and crosses between Merino 

and Border Leicester. Genomic prediction accuracies of 0.24 and 0.28 were observed for 

YGFW using GBLUP and BayesR, respectively, and 0.31 and 0.35 for YFD for the same 

methods, respectively, in Merino and crossed Merino (Bolormaa et al., 2017a). For NLB, 
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Bolormaa et al. (2017b) reported genomic prediction accuracies ranging from 0.15 to 0.56 

considering different validation strategies and prediction based on GBLUP and BayesR under 

cross-validation approaches for Merino sheep. Those differences in the genomic prediction 

accuracies for the same traits are also related to the statistical model and validation method used 

in the evaluations, beyond the other factors previously mentioned (e.g., heritability, population 

structure, and genetic diversity). It is also important to point out that GEBV accuracies were 

not calculated in the same way across all the studies, but the LR method used in this study is 

currently considered as the gold-standard approach. 

The regression coefficient of the adjusted (or corrected) phenotypes or EBV on the 

GEBV is usually used to measure the “bias” of GEBV (Brown et al., 2018; Gao et al., 2012; 

Moghaddar et al., 2019; Oliveira et al., 2021). This measure was accessed as dispersion in our 

study, as it represents how the GEBV were deflated (over or under-estimated). Prediction bias, 

as a property of the method and the population under evaluation, is the expectation of the 

difference between average true and predicted breeding value; bias is zero under ideal 

conditions and can be approximated by the difference between the average (G)EBV in the 

whole and partial data sets (Legarra & Reverter, 2018). The fact that GEBV and EBV for most 

of the scenarios across traits were over-estimated in the Rambouillet sheep was similar to that 

observed in other studies (Brown et al., 2018; Moghaddar et al., 2019; Oliveira et al., 2021). 

Our conclusions regarding the benefit of including genomic information in prediction based on 

dispersion followed the same pattern observed for the GEBV prediction accuracies; this was 

likely because they are affected by similar factors. 

Reports of prediction bias in sheep, as described by Legarra and Reverter (2018), are 

scarce, and were found only in dairy sheep (Macedo et al., 2020; 2022). The same is true for 

TA, although this is an important metric when reporting breeding values back to producers. 

Brito et al. (2017b) observed TA values ranging from 0.25 to 0.49 across a range of growth, 
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carcass, and meat quality traits, which are smaller than the values observed in the current study. 

The substantial increase in the TA (Figure 4) especially for the young individuals using genomic 

information (Figure 5) is promising because these are the focal individuals that need to be 

ranked for selection purposes. 

Selective genotyping can result in maximum genetic response (Boligon et al., 2012), 

which could explain the improvements in the prediction results for most of the traits analyzed 

using genomic information even based on a small number of individuals (242 to 632 for NLB 

and BWT, respectively) genotyped using a moderate SNP density panel (~32 K SNP). Most of 

the prediction accuracy using genomic information is due to population structure, as described 

by Daetwyler et al. (2012). Those authors showed that up to 86% of the prediction accuracy 

can be achieved by using only one chromosome in a multibreed sheep population. Although 

one chromosome was enough to capture the population structure, it was unlikely to contain all 

the QTL affecting a trait (Daetwyler et al., 2012). Nevertheless, the recommendation is to 

increase the SNP panel density, through genotyping and imputation, for genomic predictions 

so that both population structure and LD between marker and QTL are fully explored 

(Daetwyler et al., 2012). Exploring and using weighted single-step genomic predictions and 

genome-wide associations has also been encouraged (Wang et al., 2012) as there may be 

important genomic regions that explain more of the total additive genetic variance for the traits 

of interest. 

Selective genotyping can increase bias in the variance component estimation and 

therefore is not recommended for the breeding programs that only use phenotypes and pedigree 

relationships to drive selection decisions (Wang et al., 2020). The potential bias from selective 

genotyping was a reason for using the variance components provided by the NSIP, derived 

using solely phenotypic and pedigree information. Using random selection to choose the 

samples to be genotyped, as well as increasing the training population size, are recommended 
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to avoid bias in both variance component estimation and GEBV, as more biased predictions 

were observed using genomic information for most of the traits (Figure 2). 

 

4.2 Using different alpha values to construct the genomic relationship matrices  

In general, appropriate 𝛼 and 𝛽 parameters have more impact in GEBV bias reduction 

(Gao et al., 2012). Despite greater GEBV accuracies for a higher (0.95) 𝛼 value, 0.50 is the 

choice to create G in single-step evaluations for a range of carcass traits in terminal sire sheep 

breeds in Australia (McMillan & Swan, 2017). According to these authors, an 𝛼 equal to 0.50 

was chosen because: 1) when increasing 𝛼, accuracies increased until reaching an asymptote at 

around 0.50, which was not the case in the current study; 2) the GEBV using 𝛼 between 0.50 

and 0.95 were highly correlated; and 3) less variation was observed in the GEBV of genotyped 

individuals without phenotypes with 𝛼 equal to 0.50; 4) with higher 𝛼 values, GEBV bias (over-

prediction) increased.  

In this study, using 𝛼 of 0.50 showed only half of the increase in the accuracies 

compared to 0.95. No clear advantage in GEBV bias, dispersion, or TA was observed with one 

𝛼 value compared to the other. Therefore, we recommend 𝛼 of 0.95 for single-step genomic 

evaluations in U.S. Rambouillet sheep. However, it is important to highlight that we had a 

smaller number of genotyped individuals as compared to McMillan and Swan (2017) and we 

used the LR method (Legarra & Reverter, 2018) to derive the GEBV accuracies, bias, and 

dispersion; they instead used cross-validation to test their predictions with random assignment 

of individuals to groups. 

 

4.3 Haplotype-based single-step genomic predictions 

The HAP-BLUP-LD_0.50 scenario was chosen to represent the haplotype-based 

methods because the LD of 0.50 was the level most likely to estimate the recombination 
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hotspots properly, which are the specific points in the genome with higher probability of 

recombination (Kim et al., 2018). The LD threshold of 0.50 to create the haploblocks also 

tended to provide better results between the haplotype-based prediction for many of the traits, 

but in other scenarios, similar results were observed.  

Using haplotype-based methods did not improve the prediction results for any of the 

traits analyzed (accuracies, bias, dispersion, and TA) compared to fitting SNP in a real sheep 

dataset. Improved predictions had been hypothesized by Araujo et al. (2021). According to this 

previous simulation-based study, haplotype-based genomic predictions could outperform SNP-

based models in real sheep datasets because the former can capture epistasis and these 

populations could have more complex interactions within haplotype blocks due higher effective 

population size. Liang et al. (2020) showed that epistasis was the main reason for higher GEBV 

accuracies when using haplotypes instead of SNP in seven traits in humans, which is a highly 

genetically diverse population (Park, 2011). However, in this study, the small number of 

genotyped individuals (722) as well as the density of the SNP panel used (~32K SNP) could 

have affected both SNP and haplotype predictions. 

The algorithm to create the LD-based haploblocks and the method to code the 

haplotypes during the creation of the relationship matrix could also have affected the prediction 

results. There are several algorithms to create LD-haploblocks, such as MATILDE (Pattaro et 

al., 2008), confidence interval (Gabriel et al., 2002), four gamete test (Wang et al., 2002), solid 

spine (Barret et al., 2005), MIG++ (Taliun et al., 2014), S-MIG++ (Taliun et al., 2016), and 

Big-LD (Kim et al., 2018). We have used the Big-LD algorithm to construct the haploblocks 

because the LD-blocks produced by this method agree better with the true recombination 

hotspots (determined experimentally in the major histocompatibility complex region from 

semen of north-European British donors) and is more computationally efficient than the 

previously mentioned algorithms (Kim et al., 2018). However, as the haplotype diversity index 
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and true discovery ratio of the recombination hotspots can be lower using Big-LD (Kim et al., 

2018), evaluating different algorithms to create the LD-haplotype blocks is also recommended. 

New methods based on clustering algorithms (Won et al., 2020) and machine learning methods 

(Lim et al., 2022) have also recently been proposed to create and select the best haplotypes to 

be used, respectively. This type of study is scarce not only in sheep but also in other livestock 

species. 

The haplotypes can be multiallelic markers (Gabriel et al., 2002; Calus et al., 2008). 

However, we used the unique multiallelic haplotype alleles coded as ps-SNP to perform 

genomic predictions under the ssGBLUP framework. The ps-SNP derived from the LD-

haploblocks were then merged with the NCSNP to create the 𝐆 matrix, similar to Araujo et al. 

(2021). This strategy enables using haplotypes to perform genomic predictions using software 

developed for fitting individual SNP (Teissier et al., 2020), including or excluding non-

genotyped individuals (ssGBLUP and GBLUP, respectively). Teissier et al. (2020) considered 

both NCSNP and unique multiallelic haplotype alleles as ps-SNP and observed up to 22% 

increase in GEBV prediction accuracy using different LD- or fixed-SNP-length-based 

haploblocks for milk production traits in dairy goats using ssGBLUP. Milk production traits 

are known to be affected by a major gene (DGAT1). In general, GEBV prediction results for 

haplotype-based methods are scarce in small ruminants and additional studies are needed. 

The GVCHAP is a computing pipeline that allows multiallelic haplotypes to be used 

directly to create a genomic additive (and dominance) relationship matrix for both genomic 

prediction and variance component estimation using haplotypes or SNP (Prakapenca et al., 

2020). GVCHAP is based in the multiallelic haplotype model proposed by Da (2015), which 

uses the quantitative genetic theory to derive a general multiallelic partition of genotypic values 

with factorization to define the genomic relationships. However, the GVCHAP is based on 

GREML and GBLUP and, thus, only considers genotyped individuals with phenotypes. 
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Considering the different algorithms and methods to create the genomic relationship matrix 

including haplotypes, there are still alternatives to evaluate the feasibility of including 

haplotypes in genomic predictions. Future studies in sheep should also consider the possibility 

of creating haplotypes based in functional information (e.g., gene regions) to make haplotype 

predictions (Da et al., 2015; Prakapenca et al., 2020). 

Despite the hypothesis that haplotypes could outperform SNP and provide high 

accuracies and lower bias in genomic predictions, practical results show that this does not 

usually happen. As summarized by Araujo et al. (2021), the benefits of using haplotype-based 

methods for genomic prediction are equivocal. Improvements occur mainly in the evaluation 

of traits with major genes, as shown by Teissier et al. (2020). Nevertheless, as stated before, 

there are haplotype blocking and selection methods that should be further investigated. 

Marker density can also affect the accuracy of SNP phasing (Weng et al., 2014) and the 

precision in which the recombination hotspots are determined (Weng et al., 2019) which, 

respectively, are the first steps for the haplotype prediction and the basis of the LD-based 

haploblocks. In addition, epistasis, which is the component that might contribute the most to 

improvements in accuracy with haplotype predictions (Liang et al., 2020), is a complex effect 

and requires a substantial number of individuals and markers/bins to be properly estimated 

(Zhang et al., 2016). Therefore, larger reference populations and denser SNP panels are 

recommended to evaluate genomic predictions using haplotypes in sheep populations. 

 

5. Conclusions 

Fitting SNP or haplotypes (as pseudo-SNP) provided similar or higher GEBV prediction 

and theoretical accuracies and reduced the dispersion of the GEBV for body weight, wool, and 

reproductive traits in Rambouillet sheep, while the prediction bias showed no clear 

improvements by adding genomic information. Alpha value equal to 0.95 is recommended to 
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weight the genomic relationships to model the covariances between individuals. The use of 

haplotypes showed no advantage compared to SNP at the current reference population size and 

SNP panel density used, regardless of the LD threshold used to create the haploblocks. Efforts 

to increase the number of genotyped individuals are paramount to take full advantage of 

genomic information to accelerate genetic progress in the U.S. Rambouillet sheep breeding 

program. 
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VI – CONSIDERAÇOES FINAIS 

 

O uso de haplótipos nas análises genômicas em ruminantes de interesse 

zootécnico é promissor. As acurácias, viés e dispersão dos valores genéticos genômicos 

dos indivíduos não apresentaram diferenças substancias usando os haplótipos em 

comparação com os SNPs em estudo de simulação ou em dados reais de ovinos. No 

entanto, deve-se notar que a epistasia, um importante componente para a melhora dos 

resultados da predição com haplótipos, não foi considerado na simulação, sendo 

recomendado considera-la em estudos futuros. No caso da predição genômica em dados 

reais de ovinos, deve-se obserar que a população de referêcia utilizada foi relativamente 

pequena devido a limitações no número de animais genotipados, o que pode afetar 

negativamente a estimação dos efeitos dos haplótipos, sendo recomendado o aumento da 

população de referência em estudos futuros. No entanto, apesar das limitações, o uso de 

informação genômica (SNPs ou haplótipos) na construção do parentesco proporcionou 

melhores resultados na prediçao dos valores genéticos para a maioria das características 

de cresimento, lã e reprodutivas comparado ao pedigree; sendo recomendado a 

implementação de seleção genômica para a raça Rambouillet nos Estados Unidos. O 

incremento no tempo de análise com haplótipos quando comparado aos SNPs é evidente, 

no entanto, depende do número de indivíduos genotipados e nível de desequilíbrio de 

ligação. A presença de haplótipos nos estudos de associação genômica foram essenciais 

para a descoberta de genes candidatos novos, permitindo também identificar genes 

previamente descritos no comportamento de bovinos. Recomendamos o uso de haplótipos 

considerando diferentes níveis de desequilíbrio ligação junto com os SNPs para a 

prospecção de genes e loci de características quantitativas em animais de produção. 
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100 individuals. People with autism display an array of symptoms encompassing emotional 

processing, sociability, perception and memory, and present as uniquely as the individual. No 

theory has suggested a single underlying neuropathology to account for these diverse 

symptoms. The Intense World Theory, proposed here, describes a unifying pathology producing 

the wide spectrum of manifestations observed in autists. This theory focuses on the neocortex, 

fundamental for higher cognitive functions, and the limbic system, key for processing emotions 

and social signals. Drawing on discoveries in animal models and neuroimaging studies in 

individuals with autism, we propose how a combination of genetics, toxin exposure and/or 

environmental stress could produce hyper-reactivity and hyper-plasticity in the microcircuits 

involved with perception, attention, memory and emotionality. These hyper-functioning circuits 

will eventually come to dominate their neighbors, leading to hyper-sensitivity to incoming 

stimuli, over-specialization in tasks and a hyper-preference syndrome. We make the case that 

this theory of enhanced brain function in autism explains many of the varied past results and 

resolves conflicting findings and views and makes some testable experimental predictions. 

https://www.frontiersin.org/about/policies-and-publication-ethics#Bioethics
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2. Figure and Table Guidelines 

2.1. CC-BY Licence 

All figures, tables, and images will be published under a Creative Commons CC-BY licence, 

and permission must be obtained for use of copyrighted material from other sources (including 

re-published/adapted/modified/partial figures and images from the internet). It is the 

responsibility of the authors to acquire the licenses, follow any citation instructions requested by 

third-party rights holders, and cover any supplementary charges. 

For additional information, please see the Image Manipulation section. 

2.2. Figure Requirements and Style Guidelines 

• Frontiers requires figures to be submitted individually, in the same order as they are 

referred to in the manuscript; the figures will then be automatically embedded at the end 

of the submitted manuscript. Kindly ensure that each figure is mentioned in the text and 

in numerical order. 

• For figures with more than one panel, panels should be clearly indicated using labels (A), 

(B), (C), (D), etc. However, do not embed the part labels over any part of the image, 

these labels will be replaced during typesetting according to Frontiers’ journal style. For 

graphs, there must be a self-explanatory label (including units) along each axis. 

• For LaTeX files, figures should be included in the provided PDF. In case of acceptance, 

our Production Office might require high-resolution files of the figures included in the 

manuscript in EPS, JPEG or TIF/TIFF format. 

• In order to be able to upload more than one figure at a time, save the figures (labeled in 

order of appearance in the manuscript) in a zip file and upload them as ‘Supplementary 

Material Presentation.’ 

Please note that figures not in accordance with the guidelines will cause substantial delay during 

the production process. 

2.2.1. Captions 

Captions should be preceded by the appropriate label, for example "Figure 1." Figure captions 

should be placed at the end of the manuscript. Figure panels are referred to by bold capital 

letters in brackets: (A), (B), (C), (D), etc. 

2.2.2. Image Size and Resolution Requirements 

Figures should be prepared with the PDF layout in mind. Individual figures should not be longer 

than one page and with a width that corresponds to 1 column (85 mm) or 2 columns (180 mm). 

All images must have a resolution of 300 dpi at final size. Check the resolution of your figure 

by enlarging it to 150%. If the image appears blurry, jagged or has a stair-stepped effect, the 

resolution is too low. 

• The text should be legible and of high quality. The smallest visible text should be no less 

than 8 points in height when viewed at actual size. 

• Solid lines should not be broken up. Any lines in the graphic should be no smaller than 2 

points wide. 

Please note that saving a figure directly as an image file (JPEG, TIF) can greatly affect the 

resolution of your image. To avoid this, one option is to export the file as PDF, then convert into 

TIFF or EPS using a graphics software. 

2.2.3. Format and Color Image Mode 

• The following formats are accepted: TIF/TIFF (.tif/.tiff), JPEG (.jpg), and EPS (.eps) 

(upon acceptance). 

• Images must be submitted in the color mode RGB. 

https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/policies-and-publication-ethics#ImageManipulation
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2.2.4. Chemical Structures 

Chemical structures should be prepared using ChemDraw or a similar program. If working with 

ChemDraw please use our Frontiers ChemDraw template. If working with another program 

please follow the guidelines given below: 

• Drawing settings: chain angle, 120° bond spacing, 18% width; fixed length, 14.4 pt; bold 

width, 2.0 pt; line width, 0.6 pt; margin width, 1.6 pt; hash spacing, 2.5 pt. Scale 100% 

Atom Label settings: font, Arial; size, 8 pt. 

• Assign all chemical compounds a bold, Arabic numeral in the order in which the 

compounds are presented in the manuscript text. 

2.3. Table Requirements and Style Guidelines 

• Tables should be inserted at the end of the manuscript in an editable format. If you use a 

word processor, build your table in Word. If you use a LaTeX processor, build your table 

in LaTeX. An empty line should be left before and after the table. 

• Table captions must be placed immediately before the table. Captions should be preceded 

by the appropriate label, for example "Table 1." Please use only a single paragraph for 

the caption. 

• Kindly ensure that each table is mentioned in the text and in numerical order. 

• Please note that large tables covering several pages cannot be included in the final PDF 

for formatting reasons. These tables will be published as supplementary material. 

Please note that tables which are not according to the guidelines will cause substantial delay 

during the production process. 

2.4. Accessibility 

Frontiers encourages authors to make the figures and visual elements of their articles accessible 

for the visually impaired. An effective use of color can help people with low visual acuity, or 

color blindness, understand all the content of an article. 

These guidelines are easy to implement and are in accordance with the W3C Web Content 

Accessibility Guidelines (WCAG 2.1), the standard for web accessibility best practices. 

A. Ensure sufficient contrast between text and its background 

People who have low visual acuity or color blindness could find it difficult to read text with low 

contrast background color. Try using colors that provide maximum contrast. 

WC3 recommends the following contrast ratio levels: 

• Level AA, contrast ratio of at least 4.5:1 

• Level AAA, contrast ratio of at least 7:1 

Level AA 

Contrast ratio 4.6:1 

  

Level AA 

Contrast ratio 9.5:1 

You can verify the contrast ratio of your palette with these online ratio checkers: 

• WebAIM 

• Color Safe 

B. Avoid using red or green indicators 

More than 99% of color-blind people have a red-green color vision deficiency. 

C. Avoid using only color to communicate information 

https://www.frontiersin.org/files/zip/FrontChemTemplate.zip
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://webaim.org/resources/contrastchecker/
http://colorsafe.co/
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Elements with complex information like charts and graphs can be hard to read when only color 

is used to distinguish the data. Try to use other visual aspects to communicate information, such 

as shape, labels, and size. Incorporating patterns into the shape fills also make differences 

clearer; for an example please see below: 

 

3. Supplementary Material 

Data that are not of primary importance to the text, or which cannot be included in the article 

because they are too large or the current format does not permit it (such as videos, raw data 

traces, powerpoint presentations, etc.), can be uploaded as Supplementary Material during the 

submission procedure and will be displayed along with the published article. All supplementary 

files are deposited to Figshare for permanent storage and receive a DOI. 

Supplementary Material is not typeset, so please ensure that all information is clearly presented 

without tracked changes/highlighted text/line numbers, and the appropriate caption is included 

in the file. To avoid discrepancies between the published article and the supplementary material, 

please do not add the title, author list, affiliations or correspondence in the supplementary files. 

The Supplementary Material can be uploaded as Data Sheet (Word, Excel, CSV, CDX, FASTA, 

PDF or Zip files), Presentation (PowerPoint, PDF or Zip files), Image (CDX, EPS, JPEG, PDF, 

PNG or TIF/TIFF), Table (Word, Excel, CSV or PDF), Audio (MP3, WAV or WMA) or Video 

(AVI, DIVX, FLV, MOV, MP4, MPEG, MPG or WMV). 

Technical requirements for Supplementary Images: 

• 300 DPIs 

• RGB color mode 

For Supplementary Material templates (LaTeX and Word), see our Supplementary Material 

templates. 

4. References 

Frontiers journals use one of two reference styles, either Harvard (Author-Date) or Vancouver 

(Numbered). Please check this page to find the correct style for your target journal. 

• All citations in the text, figures or tables must be in the reference list and vice-versa. 

• The names of the first six authors followed by et al. and the DOI (when available) should 

be provided. 

• Given names of authors should be abbreviated to initials (e.g., Smith, J., Lewis, C.S., 

etc.) 

• The reference list should only include articles that are published or accepted. 

• Unpublished data, submitted manuscripts or personal communications should be cited 

within the text only, for the article types that allow such inclusions. 

• For accepted but unpublished works use "in press" instead of page numbers. 

• Data sets that have been deposited to an online repository should be included in the 

reference list. Include the version and unique identifier when available. 

• Personal communications should be documented by a letter of permission. 

https://www.frontiersin.org/design/zip/Frontiers_Supplementary_Material.zip
https://www.frontiersin.org/design/zip/Frontiers_Supplementary_Material.zip
https://zendesk.frontiersin.org/hc/en-us/articles/360017860337-Frontiers-Reference-Styles-by-Journal
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• Website URLs should be included as footnotes. 

• Any inclusion of verbatim text must be contained in quotation marks and clearly 

reference the original source. 

• Preprints can be cited as long as a DOI or archive URL is available, and the citation 

clearly mentions that the contribution is a preprint. If a peer-reviewed journal publication 

for the same preprint exists, the official journal publication is the preferred source. See 

the Preprints section for more information. 

4.1. Harvard Reference Style (Author-Date) 

Many Frontiers journals use the Harvard referencing system, to find the correct reference style 

and resources for the journal you are submitting to please go to this page. Reference examples 

are found below, for more examples of citing other documents and general questions regarding 

the Harvard reference style, please refer to the Chicago Manual of Style. 

4.1.1. In-text Citations 

• For works by a single author, include the surname, followed by the year. 

• For works by two authors, include both surnames, followed by the year. 

• For works by more than two authors, include only the surname of the first author 

followed by et al., followed by the year. 

• For Humanities and Social Sciences articles, include the page numbers. 

4.1.2. Reference List 

ARTICLE IN A PRINT JOURNAL 

Sondheimer, N., and Lindquist, S. (2000). Rnq1: an epigenetic modifier of protein function in 

yeast. Mol. Cell. 5, 163-172. 

ARTICLE IN AN ONLINE JOURNAL 

Tahimic, C.G.T., Wang, Y., Bikle, D.D. (2013). Anabolic effects of IGF-1 signaling on the 

skeleton. Front. Endocrinol. 4:6. doi: 10.3389/fendo.2013.00006 

ARTICLE OR CHAPTER IN A BOOK 

Sorenson, P. W., and Caprio, J. C. (1998). "Chemoreception," in The Physiology of Fishes, ed. 

D. H. Evans (Boca Raton, FL: CRC Press), 375-405. 

BOOK 

Cowan, W. M., Jessell, T. M., and Zipursky, S. L. (1997). Molecular and Cellular Approaches 

to Neural Development. New York: Oxford University Press. 

ABSTRACT 

Hendricks, J., Applebaum, R., and Kunkel, S. (2010). A world apart? Bridging the gap between 

theory and applied social gerontology. Gerontologist 50, 284-293. Abstract retrieved from 

Abstracts in Social Gerontology database. (Accession No. 50360869) 

WEBSITE 

World Health Organization. (2018). E. coli. https://www.who.int/news-room/fact-

sheets/detail/e-coli [Accessed March 15, 2018]. 

PATENT 

Marshall, S. P. (2000). Method and apparatus for eye tracking and monitoring pupil dilation to 

evaluate cognitive activity. U.S. Patent No 6,090,051. Washington, DC: U.S. Patent and 

Trademark Office. 

https://www.frontiersin.org/about/policies-and-publication-ethics#Preprints
https://zendesk.frontiersin.org/hc/en-us/articles/360017860337-Frontiers-Reference-Styles-by-Journal
https://www.chicagomanualofstyle.org/home.html
https://www.who.int/news-room/fact-sheets/detail/e-coli
https://www.who.int/news-room/fact-sheets/detail/e-coli
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DATA 

Perdiguero P, Venturas M, Cervera MT, Gil L, Collada C. Data from: Massive sequencing of 

Ulms minor's transcriptome provides new molecular tools for a genus under the constant threat 

of Dutch elm disease. Dryad Digital Repository. (2015) http://dx.doi.org/10.5061/dryad.ps837 

THESES AND DISSERTATIONS 

Smith, J. (2008) Post-structuralist discourse relative to phenomological pursuits in the 

deconstructivist arena. [dissertation/master’s thesis]. [Chicago (IL)]: University of Chicago 

PREPRINT 

Smith, J. (2008). Title of the document. Preprint repository name [Preprint]. Available at: 

https://persistent-url (Accessed March 15, 2018). 

4.2. Vancouver Reference Style (Numbered) 

Many Frontiers journals use the numbered referencing system, to find the correct reference style 

and resources for the journal you are submitting to please go to this page. 

Reference examples are found below, for more examples of citing other documents and general 

questions regarding the Vancouver reference style, please refer to Citing Medicine. 

4.2.1. In-text Citations 

• Please apply the Vancouver system for in-text citations. 

• In-text citations should be numbered consecutively in order of appearance in the text—

identified by Arabic numerals in the parenthesis (use square brackets for Physics and 

Mathematics articles). 

4.2.2. Reference List 

ARTICLE IN A PRINT JOURNAL 

Sondheimer N, Lindquist S. Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 

(2000) 5:163-72. 

ARTICLE IN AN ONLINE JOURNAL 

Tahimic CGT, Wang Y, Bikle DD. Anabolic effects of IGF-1 signaling on the skeleton. Front 

Endocrinol (2013) 4:6. doi: 10.3389/fendo.2013.00006 

ARTICLE OR CHAPTER IN A BOOK 

Sorenson PW, Caprio JC. "Chemoreception,". In: Evans DH, editor. The Physiology of Fishes. 

Boca Raton, FL: CRC Press (1998). p. 375-405. 

BOOK 

Cowan WM, Jessell TM, Zipursky SL. Molecular and Cellular Approaches to Neural 

Development. New York: Oxford University Press (1997). 345 p. 

ABSTRACT 

Christensen S, Oppacher F. An analysis of Koza's computational effort statistic for genetic 

programming. In: Foster JA, editor. Genetic Programming. EuroGP 2002: Proceedings of the 

5th European Conference on Genetic Programming; 2002 Apr 3–5; Kinsdale, Ireland. Berlin: 

Springer (2002). p. 182–91. 

WEBSITE 

World Health Organization. E. coli (2018). https://www.who.int/news-room/fact-sheets/detail/e-

coli [Accessed March 15, 2018]. 

PATENT 

Pagedas AC, inventor; Ancel Surgical R&D Inc., assignee. Flexible Endoscopic Grasping and 

Cutting Device and Positioning Tool Assembly. United States patent US 20020103498 (2002). 

https://zendesk.frontiersin.org/hc/en-us/articles/360017860337-Frontiers-Reference-Styles-by-Journal
https://www.ncbi.nlm.nih.gov/books/NBK7256/
https://www.who.int/news-room/fact-sheets/detail/e-coli
https://www.who.int/news-room/fact-sheets/detail/e-coli
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DATA 

Perdiguero P, Venturas M, Cervera MT, Gil L, Collada C. Data from: Massive sequencing of 

Ulms minor's transcriptome provides new molecular tools for a genus under the constant threat 

of Dutch elm disease. Dryad Digital Repository. (2015) http://dx.doi.org/10.5061/dryad.ps837 

THESES AND DISSERTATIONS 

Smith, J. (2008) Post-structuralist discourse relative to phenomological pursuits in the 

deconstructivist arena. [dissertation/master’s thesis]. [Chicago (IL)]: University of Chicago 

PREPRINT 

Smith, J. Title of the document. Preprint repository name [Preprint] (2008). Available at: 

https://persistent-url (Accessed March 15, 2018). 
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Manuscript Submission Overview 

Types of Publications 

Genes has no restrictions on the length of manuscripts, provided that the text is concise and 

comprehensive. Full experimental details must be provided so that the results can be 

reproduced. Genes requires that authors publish all experimental controls and make full datasets 

available where possible (see the guidelines on Supplementary Materials and references to 

unpublished data). 

Manuscripts submitted to Genes should neither be published previously nor be under 

consideration for publication in another journal. The main article types are as follows: 

• Articles: Original research manuscripts. The journal considers all original research 

manuscripts provided that the work reports scientifically sound experiments and 

provides a substantial amount of new information. Authors should not unnecessarily 

divide their work into several related manuscripts, although short Communications of 

preliminary, but significant, results will be considered. The quality and impact of the 

study will be considered during peer review. 

• Reviews: These provide concise and precise updates on the latest progress made in a 

given area of research. Systematic reviews should follow the PRISMA guidelines. 

Submission Process 

Manuscripts for Genes should be submitted online at susy.mdpi.com. The submitting author, 

who is generally the corresponding author, is responsible for the manuscript during the 

submission and peer-review process. The submitting author must ensure that all eligible co-

authors have been included in the author list (read the criteria to qualify for authorship) and 

that they have all read and approved the submitted version of the manuscript. To submit your 

manuscript, register and log in to the submission website. Once you have registered, click here 

to go to the submission form for Genes. All co-authors can see the manuscript details in the 

submission system, if they register and log in using the e-mail address provided during 

manuscript submission. 

Accepted File Formats 

Authors must use the Microsoft Word template or LaTeX template to prepare their 

manuscript. Using the template file will substantially shorten the time to complete copy-editing 

and publication of accepted manuscripts. The total amount of data for all files must not exceed 

120 MB. If this is a problem, please contact the Editorial Office genes@mdpi.com. Accepted 

file formats are: 

• Microsoft Word: Manuscripts prepared in Microsoft Word must be converted into a 

single file before submission. When preparing manuscripts in Microsoft Word, 

the Genes Microsoft Word template file must be used. Please insert your graphics 

(schemes, figures, etc.) in the main text after the paragraph of its first citation. 

• LaTeX: Manuscripts prepared in LaTeX must be collated into one ZIP folder (including 

all source files and images, so that the Editorial Office can recompile the submitted 

PDF). When preparing manuscripts in LaTeX, please use the Genes LaTeX template 

files. You can now also use the online application writeLaTeX to submit articles 

directly to Genes. The MDPI LaTeX template file should be selected from 

the writeLaTeX template gallery. 

• Supplementary files: May be any format, but it is recommended that you use common, 

non-proprietary formats where possible (see below for further details). 

Disclaimer: Usage of these templates is exclusively intended for submission to the journal 

for peer-review, and strictly limited to this purpose and it cannot be used for posting 

online on preprint servers or other websites. 

https://www.mdpi.com/journal/genes/instructions#suppmaterials
https://www.mdpi.com/editorial_process#standards
https://susy.mdpi.com/
https://www.mdpi.com/journal/genes/instructions#authorship
https://susy.mdpi.com/
https://www.mdpi.com/user/manuscripts/upload/?journal=genes
https://www.mdpi.com/user/manuscripts/upload/?journal=genes
https://www.mdpi.com/files/word-templates/genes-template.dot
https://www.mdpi.com/authors/latex
mailto:genes@mdpi.com
https://www.mdpi.com/files/word-templates/genes-template.dot
https://www.mdpi.com/authors/latex
https://www.mdpi.com/authors/latex
https://www.writelatex.com/
https://www.writelatex.com/templates/mdpi-article-template/fvjngfxymnbr
https://www.mdpi.com/journal/genes/instructions#suppmaterials
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Free Format Submission 

Genes now accepts free format submission: 

• We do not have strict formatting requirements, but all manuscripts must contain the 

required sections: Author Information, Abstract, Keywords, Introduction, Materials & 

Methods, Results, Conclusions, Figures and Tables with Captions, Funding 

Information, Author Contributions, Conflict of Interest and other Ethics Statements. 

Check the Journal Instructions for Authors for more details. 

• Your references may be in any style, provided that you use the consistent formatting 

throughout. It is essential to include author(s) name(s), journal or book title, article or 

chapter title (where required), year of publication, volume and issue (where appropriate) 

and pagination. DOI numbers (Digital Object Identifier) are not mandatory but highly 

encouraged. The bibliography software package EndNote, Zotero, Mendeley, Reference 

Manager are recommended. 

• When your manuscript reaches the revision stage, you will be requested to format the 

manuscript according to the journal guidelines. 

Cover Letter 

A cover letter must be included with each manuscript submission. It should be concise and 

explain why the content of the paper is significant, placing the findings in the context of existing 

work. It should explain why the manuscript fits the scope of the journal. 

Any prior submissions of the manuscript to MDPI journals must be acknowledged. If this is the 

case, it is strongly recommended that the previous manuscript ID is provided in the submission 

system, which will ease your current submission process. The names of proposed and excluded 

reviewers should be provided in the submission system, not in the cover letter. 

All cover letters are required to include the statements: 

• We confirm that neither the manuscript nor any parts of its content are currently under 

consideration or published in another journal. 

• All authors have approved the manuscript and agree with its submission to (journal 

name). 

Author Biography 

Authors are encouraged to add a biography (maximum 150 words) to the submission and 

publish it. This should be a single paragraph and should contain the following points: 

1. Authors’ full names followed by current positions; 

2. Education background including institution information and year of graduation (type 

and level of degree received); 

3. Work experience; 

4. Current and previous research interests; 

5. Memberships of professional societies and awards received. 

Note for Authors Funded by the National Institutes of Health (NIH) 

This journal automatically deposits papers to PubMed Central after publication of an issue. 

Authors do not need to separately submit their papers through the NIH Manuscript Submission 

System (NIHMS, http://nihms.nih.gov/). 

[Return to top] 

Manuscript Preparation 

General Considerations 

• Research manuscripts should comprise: 

o Front matter: Title, Author list, Affiliations, Abstract, Keywords 

https://www.mdpi.com/journal/genes/instructions
https://www.zotero.org/
https://www.nihms.nih.gov/
https://www.mdpi.com/journal/genes/instructions#top
https://www.mdpi.com/journal/genes/instructions#front
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o Research manuscript sections: Introduction, Materials and Methods, Results, 

Discussion, Conclusions (optional). 

o Back matter: Supplementary Materials, Acknowledgments, Author 

Contributions, Conflicts of Interest, References. 

• Review manuscripts should comprise the front matter, literature review sections and 

the back matter. The template file can also be used to prepare the front and back matter 

of your review manuscript. It is not necessary to follow the remaining structure. 

Structured reviews and meta-analyses should use the same structure as research articles 

and ensure they conform to the PRISMA guidelines. 

• Graphical Abstract: 

A graphical abstract (GA) is an image that appears alongside the text abstract in the 

Table of Contents. In addition to summarizing the content, it should represent the topic 

of the article in an attention-grabbing way. Moreover, it should not be exactly the same 

as the Figure in the paper or just a simple superposition of several subfigures. Note that 

the GA must be original and unpublished artwork. Any postage stamps, currency from 

any country, or trademarked items should not be included in it. 

The GA should be a high-quality illustration or diagram in any of the following formats: 

PNG, JPEG, TIFF, or SVG. Written text in a GA should be clear and easy to read, using 

one of the following fonts: Times, Arial, Courier, Helvetica, Ubuntu or Calibri. 

The minimum required size for the GA is 560 × 1100 pixels (height × width). The size 

should be of high quality in order to reproduce well. 

• Acronyms/Abbreviations/Initialisms should be defined the first time they appear in 

each of three sections: the abstract; the main text; the first figure or table. When defined 

for the first time, the acronym/abbreviation/initialism should be added in parentheses 

after the written-out form. 

• SI Units (International System of Units) should be used. Imperial, US customary and 

other units should be converted to SI units whenever possible. 

• Accession numbers of RNA, DNA and protein sequences used in the manuscript 

should be provided in the Materials and Methods section. Also see the section 

on Deposition of Sequences and of Expression Data. 

• Equations: If you are using Word, please use either the Microsoft Equation Editor or 

the MathType add-on. Equations should be editable by the editorial office and not 

appear in a picture format. 

• Research Data and supplementary materials: Note that publication of your 

manuscript implies that you must make all materials, data, and protocols associated with 

the publication available to readers. Disclose at the submission stage any restrictions on 

the availability of materials or information. Read the information about Supplementary 

Materials and Data Deposit for additional guidelines. 

• Preregistration: Where authors have preregistered studies or analysis plans, links to 

the preregistration must be provided in the manuscript. 

• Guidelines and standards: MDPI follows standards and guidelines for certain types of 

research. See https://www.mdpi.com/editorial_process for further information. 

[Return to top] 

Front Matter 

These sections should appear in all manuscript types 

• Title: The title of your manuscript should be concise, specific and relevant. It should 

identify if the study reports (human or animal) trial data, or is a systematic review, 
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meta-analysis or replication study. When gene or protein names are included, the 

abbreviated name rather than full name should be used. 

• Author List and Affiliations: Authors' full first and last names must be provided. The 

initials of any middle names can be added. The PubMed/MEDLINE standard format is 

used for affiliations: complete address information including city, zip code, 

state/province, and country. At least one author should be designated as corresponding 

author, and his or her email address and other details should be included at the end of 

the affiliation section. Please read the criteria to qualify for authorship. 

• Abstract: The abstract should be a total of about 200 words maximum. The abstract 

should be a single paragraph and should follow the style of structured abstracts, but 

without headings: 1) Background: Place the question addressed in a broad context and 

highlight the purpose of the study; 2) Methods: Describe briefly the main methods or 

treatments applied. Include any relevant preregistration numbers, and species and 

strains of any animals used. 3) Results: Summarize the article's main findings; and 4) 

Conclusion: Indicate the main conclusions or interpretations. The abstract should be an 

objective representation of the article: it must not contain results which are not 

presented and substantiated in the main text and should not exaggerate the main 

conclusions. 

• Keywords: Three to ten pertinent keywords need to be added after the abstract. We 

recommend that the keywords are specific to the article, yet reasonably common within 

the subject discipline. 

Research Manuscript Sections 

• Introduction: The introduction should briefly place the study in a broad context and 

highlight why it is important. It should define the purpose of the work and its 

significance, including specific hypotheses being tested. The current state of the 

research field should be reviewed carefully and key publications cited. Please highlight 

controversial and diverging hypotheses when necessary. Finally, briefly mention the 

main aim of the work and highlight the main conclusions. Keep the introduction 

comprehensible to scientists working outside the topic of the paper. 

• Materials and Methods: They should be described with sufficient detail to allow 

others to replicate and build on published results. New methods and protocols should be 

described in detail while well-established methods can be briefly described and 

appropriately cited. Give the name and version of any software used and make clear 

whether computer code used is available. Include any pre-registration codes. 

• Results: Provide a concise and precise description of the experimental results, their 

interpretation as well as the experimental conclusions that can be drawn. 

• Discussion: Authors should discuss the results and how they can be interpreted in 

perspective of previous studies and of the working hypotheses. The findings and their 

implications should be discussed in the broadest context possible and limitations of the 

work highlighted. Future research directions may also be mentioned. This section may 

be combined with Results. 

• Conclusions: This section is not mandatory but can be added to the manuscript if the 

discussion is unusually long or complex. 

• Patents: This section is not mandatory but may be added if there are patents resulting 

from the work reported in this manuscript. 

[Return to top] 

Back Matter 

• Supplementary Materials: Describe any supplementary material published online 

alongside the manuscript (figure, tables, video, spreadsheets, etc.). Please indicate the 

name and title of each element as follows Figure S1: title, Table S1: title, etc. 
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• Funding: All sources of funding of the study should be disclosed. Clearly indicate 

grants that you have received in support of your research work and if you received 

funds to cover publication costs. Note that some funders will not refund article 

processing charges (APC) if the funder and grant number are not clearly and correctly 

identified in the paper. Funding information can be entered separately into the 

submission system by the authors during submission of their manuscript. Such funding 

information, if available, will be deposited to FundRef if the manuscript is finally 

published. 

Please add: “This research received no external funding” or “This research was funded 

by [name of funder] grant number [xxx]” and “The APC was funded by [XXX]” in this 

section. Check carefully that the details given are accurate and use the standard spelling 

of funding agency names at https://search.crossref.org/funding, any errors may affect 

your future funding. 

• Acknowledgments: In this section you can acknowledge any support given which is 

not covered by the author contribution or funding sections. This may include 

administrative and technical support, or donations in kind (e.g., materials used for 

experiments). 

• Author Contributions: Each author is expected to have made substantial contributions 

to the conception or design of the work; or the acquisition, analysis, or interpretation of 

data; or the creation of new software used in the work; or have drafted the work or 

substantively revised it; AND has approved the submitted version (and version 

substantially edited by journal staff that involves the author’s contribution to the study); 

AND agrees to be personally accountable for the author’s own contributions and for 

ensuring that questions related to the accuracy or integrity of any part of the work, even 

ones in which the author was not personally involved, are appropriately investigated, 

resolved, and documented in the literature. 

For research articles with several authors, a short paragraph specifying their individual 

contributions must be provided. The following statements should be used 

"Conceptualization, X.X. and Y.Y.; Methodology, X.X.; Software, X.X.; Validation, 

X.X., Y.Y. and Z.Z.; Formal Analysis, X.X.; Investigation, X.X.; Resources, X.X.; Data 

Curation, X.X.; Writing – Original Draft Preparation, X.X.; Writing – Review & 

Editing, X.X.; Visualization, X.X.; Supervision, X.X.; Project Administration, X.X.; 

Funding Acquisition, Y.Y.”, please turn to the CRediT taxonomy for the term 

explanation. For more background on CRediT, see here. "Authorship must include 

and be limited to those who have contributed substantially to the work. Please read 

the section concerning the criteria to qualify for authorship carefully". 

• Institutional Review Board Statement: In this section, please add the Institutional 

Review Board Statement and approval number for studies involving humans or animals. 

Please note that the Editorial Office might ask you for further information. Please add 

“The study was conducted according to the guidelines of the Declaration of Helsinki, 

and approved by the Institutional Review Board (or Ethics Committee) of NAME OF 

INSTITUTE (protocol code XXX and date of approval).” OR “Ethical review and 

approval were waived for this study, due to REASON (please provide a detailed 

justification).” OR “Not applicable” for studies not involving humans or animals. You 

might also choose to exclude this statement if the study did not involve humans or 

animals. 

• Informed Consent Statement: Any research article describing a study involving 

humans should contain this statement. Please add “Informed consent was obtained from 

all subjects involved in the study.” OR “Patient consent was waived due to REASON 

(please provide a detailed justification).” OR “Not applicable” for studies not involving 

humans. You might also choose to exclude this statement if the study did not involve 

humans. 

Written informed consent for publication must be obtained from participating patients 
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who can be identified (including by the patients themselves). Please state “Written 

informed consent has been obtained from the patient(s) to publish this paper” if 

applicable. 

• Data Availability Statement: In this section, please provide details regarding where 

data supporting reported results can be found, including links to publicly archived 

datasets analyzed or generated during the study. Please refer to suggested Data 

Availability Statements in section “MDPI Research Data Policies”. You might choose 

to exclude this statement if the study did not report any data. 

• Conflicts of Interest: Authors must identify and declare any personal circumstances or 

interest that may be perceived as influencing the representation or interpretation of 

reported research results. If there is no conflict of interest, please state "The authors 

declare no conflict of interest." Any role of the funding sponsors in the choice of 

research project; design of the study; in the collection, analyses or interpretation of data; 

in the writing of the manuscript; or in the decision to publish the results must be 

declared in this section. Genes does not publish studies funded partially or fully by the 

tobacco industry. Any projects funded by industry must pay special attention to the full 

declaration of funder involvement. If there is no role, please state “The sponsors had no 

role in the design, execution, interpretation, or writing of the study”. For more details 

please see Conflict of Interest. 

• References: References must be numbered in order of appearance in the text (including 

table captions and figure legends) and listed individually at the end of the manuscript. 

We recommend preparing the references with a bibliography software package, such 

as EndNote, ReferenceManager or Zotero to avoid typing mistakes and duplicated 

references. We encourage citations to data, computer code and other citable research 

material. If available online, you may use reference style 9. below. 

• Citations and References in Supplementary files are permitted provided that they also 

appear in the main text and in the reference list. 

In the text, reference numbers should be placed in square brackets [ ], and placed before the 

punctuation; for example [1], [1–3] or [1,3]. For embedded citations in the text with pagination, 

use both parentheses and brackets to indicate the reference number and page numbers; for 

example [5] (p. 10). or [6] (pp. 101–105). 

The reference list should include the full title, as recommended by the ACS style guide. Style 

files for Endnote and Zotero are available. 

References should be described as follows, depending on the type of work: 

  Journal Articles: 

1. Author 1, A.B.; Author 2, C.D. Title of the article. Abbreviated Journal Name Year, Volume, 

page range. 

  Books and Book Chapters: 

2. Author 1, A.; Author 2, B. Book Title, 3rd ed.; Publisher: Publisher Location, Country, Year; 

pp. 154–196. 

3. Author 1, A.; Author 2, B. Title of the chapter. In Book Title, 2nd ed.; Editor 1, A., Editor 2, 

B., Eds.; Publisher: Publisher Location, Country, Year; Volume 3, pp. 154–196. 

  Unpublished materials intended for publication: 

4. Author 1, A.B.; Author 2, C. Title of Unpublished Work (optional). Correspondence 

Affiliation, City, State, Country. year, status (manuscript in preparation; to be submitted). 

5. Author 1, A.B.; Author 2, C. Title of Unpublished Work. Abbreviated Journal 

Name year, phrase indicating stage of publication (submitted; accepted; in press). 

  Unpublished materials not intended for publication: 

6. Author 1, A.B. (Affiliation, City, State, Country); Author 2, C. (Affiliation, City, State, 

Country). Phase describing the material, year. (phase: Personal communication; Private 

communication; Unpublished work; etc.) 
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  Conference Proceedings: 

7. Author 1, A.B.; Author 2, C.D.; Author 3, E.F. Title of Presentation. In Title of the Collected 

Work (if available), Proceedings of the Name of the Conference, Location of Conference, 

Country, Date of Conference; Editor 1, Editor 2, Eds. (if available); Publisher: City, Country, 

Year (if available); Abstract Number (optional), Pagination (optional). 

  Thesis: 

8. Author 1, A.B. Title of Thesis. Level of Thesis, Degree-Granting University, Location of 

University, Date of Completion. 

  Websites: 

9. Title of Site. Available online: URL (accessed on Day Month Year). 

Unlike published works, websites may change over time or disappear, so we encourage you 

create an archive of the cited website using a service such as WebCite. Archived websites 

should be cited using the link provided as follows: 

10. Title of Site. URL (archived on Day Month Year). 

See the Reference List and Citations Guide for more detailed information. 

[Return to top] 

Preparing Figures, Schemes and Tables 

• File for Figures and Schemes must be provided during submission in a single zip 

archive and at a sufficiently high resolution (minimum 1000 pixels width/height, or a 

resolution of 300 dpi or higher). Common formats are accepted, however, TIFF, JPEG, 

EPS and PDF are preferred. 

• Genes can publish multimedia files in articles or as supplementary materials. Please 

contact the editorial office for further information. 

• All Figures, Schemes and Tables should be inserted into the main text close to their first 

citation and must be numbered following their number of appearance (Figure 1, Scheme 

I, Figure 2, Scheme II, Table 1, etc.). 

• All Figures, Schemes and Tables should have a short explanatory title and caption. 

• All table columns should have an explanatory heading. To facilitate the copy-editing of 

larger tables, smaller fonts may be used, but no less than 8 pt. in size. Authors should 

use the Table option of Microsoft Word to create tables. 

• Authors are encouraged to prepare figures and schemes in color (RGB at 8-bit per 

channel). There is no additional cost for publishing full color graphics. 

[Return to top] 

Original Images for Blots and Gels Requirements 

For the main text, please ensure that: 

• All experimental samples and controls used for one comparative analysis are run on the 

same blot/gel. 

• Image processing methods, such as adjusting the brightness or contrast, do not alter or 

distort the information in the figure and are applied to every pixel. High-contrast 

blots/gels are discouraged. 

• Cropped blots/gels present in the main text retain all important information and bands. 

• You have checked figures for duplications and ensured the figure legends are clear and 

accurate. Please include all relevant information in the figure legends and clearly 

indicate any re-arrangement of lanes. 

In order to ensure the integrity and scientific validity of blots (including, but not limited to, 

Western blots) and the reporting of gel data, original, uncropped and unadjusted images should 

be uploaded as Supporting Information files at the time of initial submission. 

https://www.webcitation.org/archive
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A single PDF file or a zip folder including all the original images reported in the main figure 

and supplemental figures should be prepared. Authors should annotate each original image, 

corresponding to the figure in the main article or supplementary materials, and label each lane 

or loading order. All experimental samples and controls used for one comparative analysis 

should be run on the same blot/gel image. For quantitative analyses, please provide the 

blots/gels for each independent biological replicate used in the analysis. 

[Return to top] 

Supplementary Materials, Data Deposit and Software Source Code 

MDPI Research Data Policies 

MDPI is committed to supporting open scientific exchange and enabling our authors to achieve 

best practices in sharing and archiving research data. We encourage all authors of articles 

published in MDPI journals to share their research data. Individual journal guidelines can be 

found at the journal ‘Instructions for Authors’ page. Data sharing policies concern the minimal 

dataset that supports the central findings of a published study. Generated data should be publicly 

available and cited in accordance with journal guidelines. 

MDPI data policies are informed by TOP Guidelines and FAIR Principles. 

Where ethical, legal or privacy issues are present, data should not be shared. The authors should 

make any limitations clear in the Data Availability Statement upon submission. Authors should 

ensure that data shared are in accordance with consent provided by participants on the use of 

confidential data. 

Data Availability Statements provide details regarding where data supporting reported results 

can be found, including links to publicly archived datasets analyzed or generated during the 

study. 

Below are suggested Data Availability Statements: 

• Data available in a publicly accessible repository 

The data presented in this study are openly available in [repository name e.g., FigShare] 

at [doi], reference number [reference number]. 

• Data available in a publicly accessible repository that does not issue DOIs 

Publicly available datasets were analyzed in this study. This data can be found here: 

[link/accession number] 

• Data available on request due to restrictions eg privacy or ethical 

The data presented in this study are available on request from the corresponding author. 

The data are not publicly available due to [insert reason here] 

• 3rd Party Data 

Restrictions apply to the availability of these data. Data was obtained from [third party] 

and are available [from the authors / at URL] with the permission of [third party]. 

• Data sharing not applicable 

No new data were created or analyzed in this study. Data sharing is not applicable to 

this article. 

• Data is contained within the article or supplementary material 

The data presented in this study are available in [insert article or supplementary material 

here] 

Data citation: 

• [dataset] Authors. Year. Dataset title; Data repository or archive; Version (if any); 

Persistent identifier (e.g., DOI). 

Computer Code and Software 

For work where novel computer code was developed, authors should release the code either by 

depositing in a recognized, public repository such as GitHub or uploading as supplementary 
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information to the publication. The name, version, corporation and location information for all 

software used should be clearly indicated. Please include all the parameters used to run 

software/programs analyses. 

Supplementary Material 

Additional data and files can be uploaded as "Supplementary Files" during the manuscript 

submission process. The supplementary files will also be available to the referees as part of the 

peer-review process. Any file format is acceptable; however, we recommend that common, non-

proprietary formats are used where possible. 

References in Supplementary Files 

Citations and References in Supplementary files are permitted provided that they also appear in 

the reference list of the main text. 

Unpublished Data 

Restrictions on data availability should be noted during submission and in the manuscript. "Data 

not shown" should be avoided: authors are encouraged to publish all observations related to the 

submitted manuscript as Supplementary Material. "Unpublished data" intended for publication 

in a manuscript that is either planned, "in preparation" or "submitted" but not yet accepted, 

should be cited in the text and a reference should be added in the References section. "Personal 

Communication" should also be cited in the text and reference added in the References section. 

(see also the MDPI reference list and citations style guide). 

Remote Hosting and Large Data Sets 

Data may be deposited with specialized service providers or institutional/subject repositories, 

preferably those that use the DataCite mechanism. Large data sets and files greater than 60 MB 

must be deposited in this way. For a list of other repositories specialized in scientific and 

experimental data, please consult databib.org or re3data.org. The data repository name, link to 

the data set (URL) and accession number, doi or handle number of the data set must be provided 

in the paper. The journal Data also accepts submissions of data set papers. 

Deposition of Sequences and of Expression Data 

New sequence information must be deposited to the appropriate database prior to submission of 

the manuscript. Accession numbers provided by the database should be included in the 

submitted manuscript. Manuscripts will not be published until the accession number is provided. 

• New nucleic acid sequences must be deposited in one of the following 

databases: GenBank, EMBL, or DDBJ. Sequences should be submitted to only one 

database. 

• New high throughput sequencing (HTS) datasets (RNA-seq, ChIP-Seq, degradome 

analysis, …) must be deposited either in the GEO database or in the NCBI’s Sequence 

Read Archive (SRA). 

• New microarray data must be deposited either in the GEO or 

the ArrayExpress databases.The "Minimal Information About a Microarray 

Experiment" (MIAME) guidelines published by the Microarray Gene Expression Data 

Society must be followed. 

• New protein sequences obtained by protein sequencing must be submitted to UniProt 

(submission tool SPIN). Annotated protein structure and its reference sequence must be 

submitted to RCSB of Protein Data Bank. 

All sequence names and the accession numbers provided by the databases must be provided in 

the Materials and Methods section of the article. 

Deposition of Proteomics Data 

Methods used to generate the proteomics data should be described in detail and we encourage 

authors to adhere to the "Minimum Information About a Proteomics Experiment". All 

http://databib.org/
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generated mass spectrometry raw data must be deposited in the appropriate public database such 

as ProteomeXchange, PRIDE or jPOST. At the time of submission, please include all relevant 

information in the materials and methods section, such as repository where the data was 

submitted and link, data set identifier, username and password needed to access the data. 

[Return to top] 

Research and Publication Ethics 

Research Ethics 

Research Involving Human Subjects 

When reporting on research that involves human subjects, human material, human tissues, or 

human data, authors must declare that the investigations were carried out following the rules of 

the Declaration of Helsinki of 1975 (https://www.wma.net/what-we-do/medical-

ethics/declaration-of-helsinki/), revised in 2013. According to point 23 of this declaration, an 

approval from the local institutional review board (IRB) or other appropriate ethics committee 

must be obtained before undertaking the research to confirm the study meets national and 

international guidelines. As a minimum, a statement including the project identification code, 

date of approval, and name of the ethics committee or institutional review board must be stated 

in Section ‘Institutional Review Board Statement’ of the article. 

Example of an ethical statement: "All subjects gave their informed consent for inclusion before 

they participated in the study. The study was conducted in accordance with the Declaration of 

Helsinki, and the protocol was approved by the Ethics Committee of XXX (Project 

identification code)." 

For non-interventional studies (e.g. surveys, questionnaires, social media research), all 

participants must be fully informed if the anonymity is assured, why the research is being 

conducted, how their data will be used and if there are any risks associated. As with all research 

involving humans, ethical approval from an appropriate ethics committee must be obtained prior 

to conducting the study. If ethical approval is not required, authors must either provide an 

exemption from the ethics committee or are encouraged to cite the local or national legislation 

that indicates ethics approval is not required for this type of study. Where a study has been 

granted exemption, the name of the ethics committee which provided this should be stated in 

Section ‘Institutional Review Board Statement’ with a full explanation regarding why ethical 

approval was not required. 

A written informed consent for publication must be obtained from participating patients. Data 

relating to individual participants must be described in detail, but private information 

identifying participants need not be included unless the identifiable materials are of relevance to 

the research (for example, photographs of participants’ faces that show a particular symptom). 

Patients’ initials or other personal identifiers must not appear in any images. For manuscripts 

that include any case details, personal information, and/or images of patients, authors must 

obtain signed informed consent for publication from patients (or their relatives/guardians) 

before submitting to an MDPI journal. Patient details must be anonymized as far as possible, 

e.g., do not mention specific age, ethnicity, or occupation where they are not relevant to the 

conclusions. A template permission form is available to download. A blank version of the 

form used to obtain permission (without the patient names or signature) must be uploaded with 

your submission. Editors reserve the right to reject any submission that does not meet these 

requirements. 

You may refer to our sample form and provide an appropriate form after consulting with your 

affiliated institution. For the purposes of publishing in MDPI journals, a consent, permission, or 

release form should include unlimited permission for publication in all formats (including print, 

electronic, and online), in sublicensed and reprinted versions (including translations and derived 

works), and in other works and products under open access license. To respect patients’ and any 

other individual’s privacy, please do not send signed forms. The journal reserves the right to ask 

authors to provide signed forms if necessary. 
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If the study reports research involving vulnerable groups, an additional check may be 

performed. The submitted manuscript will be scrutinized by the editorial office and upon 

request, documentary evidence (blank consent forms and any related discussion documents from 

the ethics board) must be supplied. Additionally, when studies describe groups by race, 

ethnicity, gender, disability, disease, etc., explanation regarding why such categorization was 

needed must be clearly stated in the article. 

Ethical Guidelines for the Use of Animals in Research 

The editors will require that the benefits potentially derived from any research causing harm to 

animals are significant in relation to any cost endured by animals, and that procedures followed 

are unlikely to cause offense to the majority of readers. Authors should particularly ensure that 

their research complies with the commonly-accepted '3Rs [1]': 

• Replacement of animals by alternatives wherever possible, 

• Reduction in number of animals used, and 

• Refinement of experimental conditions and procedures to minimize the harm to 

animals. 

Authors must include details on housing, husbandry and pain management in their manuscript. 

For further guidance authors should refer to the Code of Practice for the Housing and Care of 

Animals Used in Scientific Procedures [2], American Association for Laboratory Animal 

Science [3] or European Animal Research Association [4]. 

If national legislation requires it, studies involving vertebrates or higher invertebrates must only 

be carried out after obtaining approval from the appropriate ethics committee. As a minimum, 

the project identification code, date of approval and name of the ethics committee or 

institutional review board should be stated in Section ‘Institutional Review Board Statement’. 

Research procedures must be carried out in accordance with national and institutional 

regulations. Statements on animal welfare should confirm that the study complied with all 

relevant legislation. Clinical studies involving animals and interventions outside of routine care 

require ethics committee oversight as per the American Veterinary Medical Association. If the 

study involved client-owned animals, informed client consent must be obtained and certified in 

the manuscript report of the research. Owners must be fully informed if there are any risks 

associated with the procedures and that the research will be published. If available, a high 

standard of veterinary care must be provided. Authors are responsible for correctness of the 

statements provided in the manuscript. 

If ethical approval is not required by national laws, authors must provide an exemption from the 

ethics committee, if one is available. Where a study has been granted exemption, the name of 

the ethics committee that provided this should be stated in Section ‘Institutional Review Board 

Statement’ with a full explanation on why the ethical approval was not required. 

If no animal ethics committee is available to review applications, authors should be aware that 

the ethics of their research will be evaluated by reviewers and editors. Authors should provide a 

statement justifying the work from an ethical perspective, using the same utilitarian framework 

that is used by ethics committees. Authors may be asked to provide this even if they have 

received ethical approval. 

MDPI endorses the ARRIVE guidelines (arriveguidelines.org/) for reporting experiments 

using live animals. Authors and reviewers must use the ARRIVE guidelines as a checklist, 

which can be found 

at https://arriveguidelines.org/sites/arrive/files/documents/ARRIVE%20Compliance%20Q

uestionnaire.pdf. Editors reserve the right to ask for the checklist and to reject submissions that 

do not adhere to these guidelines, to reject submissions based on ethical or animal welfare 

concerns or if the procedure described does not appear to be justified by the value of the work 

presented. 
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1. NSW Department of Primary Industries and Animal Research Review Panel. Three Rs. 

Available online: https://www.animalethics.org.au/three-rs 

2. Home Office. Animals (Scientific Procedures) Act 1986. Code of Practice for the 

Housing and Care of Animals Bred, Supplied or Used for Scientific Purposes. Available 

online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads

/attachment_data/file/388535/CoPanimalsWeb.pdf 

3. American Association for Laboratory Animal Science. The Scientific Basis for 

Regulation of Animal Care and Use. Available online: https://www.aalas.org/about-

aalas/position-papers/scientific-basis-for-regulation-of-animal-care-and-use 

4. European Animal Research Association. EU regulations on animal research. Available 

online: https://www.eara.eu/animal-research-law 

Research Involving Cell Lines 

Methods sections for submissions reporting on research with cell lines should state the origin of 

any cell lines. For established cell lines the provenance should be stated and references must 

also be given to either a published paper or to a commercial source. If previously 

unpublished de novo cell lines were used, including those gifted from another laboratory, details 

of institutional review board or ethics committee approval must be given, and confirmation of 

written informed consent must be provided if the line is of human origin. 

An example of Ethical Statements: 

The HCT116 cell line was obtained from XXXX. The MLH1+ cell line was provided by 

XXXXX, Ltd. The DLD-1 cell line was obtained from Dr. XXXX. The DR-GFP and SA-GFP 

reporter plasmids were obtained from Dr. XXX and the Rad51K133A expression vector was 

obtained from Dr. XXXX. 

Research Involving Plants 

Experimental research on plants (either cultivated or wild) including collection of plant 

material, must comply with institutional, national, or international guidelines. We recommend 

that authors comply with the Convention on Biological Diversity and the Convention on the 

Trade in Endangered Species of Wild Fauna and Flora. 

For each submitted manuscript supporting genetic information and origin must be provided. For 

research manuscripts involving rare and non-model plants (other than, e.g., Arabidopsis 

thaliana, Nicotiana benthamiana, Oryza sativa, or many other typical model plants), voucher 

specimens must be deposited in an accessible herbarium or museum. Vouchers may be 

requested for review by future investigators to verify the identity of the material used in the 

study (especially if taxonomic rearrangements occur in the future). They should include details 

of the populations sampled on the site of collection (GPS coordinates), date of collection, and 

document the part(s) used in the study where appropriate. For rare, threatened or endangered 

species this can be waived but it is necessary for the author to describe this in the cover letter. 

Editors reserve the rights to reject any submission that does not meet these requirements. 

An example of Ethical Statements: 

Torenia fournieri plants were used in this study. White-flowered Crown White (CrW) and 

violet-flowered Crown Violet (CrV) cultivars selected from ‘Crown Mix’ (XXX Company, 

City, Country) were kindly provided by Dr. XXX (XXX Institute, City, Country). 

Arabidopis mutant lines (SALKxxxx, SAILxxxx,…) were kindly provided by Dr. XXX , 

institute, city, country). 

Clinical Trials Registration 

Registration 

MDPI follows the International Committee of Medical Journal Editors 

(ICMJE) guidelines which require and recommend registration of clinical trials in a public trials 

https://www.animalethics.org.au/three-rs
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/388535/CoPanimalsWeb.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/388535/CoPanimalsWeb.pdf
https://www.aalas.org/about-aalas/position-papers/scientific-basis-for-regulation-of-animal-care-and-use
https://www.aalas.org/about-aalas/position-papers/scientific-basis-for-regulation-of-animal-care-and-use
https://www.eara.eu/animal-research-law
http://www.cbd.int/convention/
http://www.cites.org/
http://www.cites.org/
http://www.icmje.org/recommendations/browse/publishing-and-editorial-issues/clinical-trial-registration.html
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registry at or before the time of first patient enrollment as a condition of consideration for 

publication. 

Purely observational studies do not require registration. A clinical trial not only refers to studies 

that take place in a hospital or involve pharmaceuticals, but also refer to all studies which 

involve participant randomization and group classification in the context of the intervention 

under assessment. 

Authors are strongly encouraged to pre-register clinical trials with an international clinical trials 

register and cite a reference to the registration in the Methods section. Suitable databases 

include clinicaltrials.gov, the EU Clinical Trials Register and those listed by the World 

Health Organisation International Clinical Trials Registry Platform. 

Approval to conduct a study from an independent local, regional, or national review body is not 

equivalent to prospective clinical trial registration. MDPI reserves the right to decline any paper 

without trial registration for further peer-review. However, if the study protocol has been 

published before the enrolment, the registration can be waived with correct citation of the 

published protocol. 

CONSORT Statement 

MDPI requires a completed CONSORT 2010 checklist and flow diagram as a condition of 

submission when reporting the results of a randomized trial. Templates for these can be found 

here or on the CONSORT website (http://www.consort-statement.org) which also describes 

several CONSORT checklist extensions for different designs and types of data beyond two 

group parallel trials. At minimum, your article should report the content addressed by each item 

of the checklist. 

[Return to top] 

Sex and Gender in Research 

We encourage our authors to follow the ‘Sex and Gender Equity in Research – SAGER – 

guidelines’ and to include sex and gender considerations where relevant. Authors should use the 

terms sex (biological attribute) and gender (shaped by social and cultural circumstances) 

carefully in order to avoid confusing both terms. Article titles and/or abstracts should indicate 

clearly what sex(es) the study applies to. Authors should also describe in the background, 

whether sex and/or gender differences may be expected; report how sex and/or gender were 

accounted for in the design of the study; provide disaggregated data by sex and/or gender, where 

appropriate; and discuss respective results. If a sex and/or gender analysis was not conducted, 

the rationale should be given in the Discussion. We suggest that our authors consult the 

full guidelines before submission. 

[Return to top] 

Borders and Territories 

Potential disputes over borders and territories may have particular relevance for authors in 

describing their research or in an author or editor correspondence address, and should be 

respected. Content decisions are an editorial matter and where there is a potential or perceived 

dispute or complaint, the editorial team will attempt to find a resolution that satisfies parties 

involved. 

MDPI stays neutral with regard to jurisdictional claims in published maps and institutional 

affiliations. 

Publication Ethics Statement 

Genes is a member of the Committee on Publication Ethics (COPE). We fully adhere to 

its Code of Conduct and to its Best Practice Guidelines. 

The editors of this journal enforce a rigorous peer-review process together with strict ethical 

policies and standards to ensure to add high quality scientific works to the field of scholarly 

publication. Unfortunately, cases of plagiarism, data falsification, image manipulation, 

https://clinicaltrials.gov/
https://www.clinicaltrialsregister.eu/
https://www.who.int/clinical-trials-registry-platform
https://www.mdpi.com/data/consort-2010-checklist.doc
https://www.mdpi.com/data/consort-2010-flow-diagram.doc
http://www.consort-statement.org/
https://www.mdpi.com/journal/genes/instructions#top
https://researchintegrityjournal.biomedcentral.com/articles/10.1186/s41073-016-0007-6
https://researchintegrityjournal.biomedcentral.com/articles/10.1186/s41073-016-0007-6
https://researchintegrityjournal.biomedcentral.com/articles/10.1186/s41073-016-0007-6
https://www.mdpi.com/journal/genes/instructions#top
http://publicationethics.org/
http://publicationethics.org/resources/code-conduct
http://publicationethics.org/resources/guidelines
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inappropriate authorship credit, and the like, do arise. The editors of Genes take such publishing 

ethics issues very seriously and are trained to proceed in such cases with a zero tolerance policy. 

Authors wishing to publish their papers in Genes must abide to the following: 

• Any facts that might be perceived as a possible conflict of interest of the author(s) must 

be disclosed in the paper prior to submission. 

• Authors should accurately present their research findings and include an objective 

discussion of the significance of their findings. 

• Data and methods used in the research need to be presented in sufficient detail in the 

paper, so that other researchers can replicate the work. 

• Raw data should preferably be publicly deposited by the authors before submission of 

their manuscript. Authors need to at least have the raw data readily available for 

presentation to the referees and the editors of the journal, if requested. Authors need to 

ensure appropriate measures are taken so that raw data is retained in full for a 

reasonable time after publication. 

• Simultaneous submission of manuscripts to more than one journal is not tolerated. 

• The journal accepts exact translations of previously published work. All submissions of 

translations must conform with our policies on translations. 

• If errors and inaccuracies are found by the authors after publication of their paper, they 

need to be promptly communicated to the editors of this journal so that appropriate 

actions can be taken. Please refer to our policy regarding Updating Published Papers. 

• Your manuscript should not contain any information that has already been published. If 

you include already published figures or images, please obtain the necessary permission 

from the copyright holder to publish under the CC-BY license. For further information, 

see the Rights and Permissions page. 

• Plagiarism, data fabrication and image manipulation are not tolerated. 

o Plagiarism is not acceptable in Genes submissions. 

Plagiarism includes copying text, ideas, images, or data from another source, 

even from your own publications, without giving any credit to the original 

source. 

Reuse of text that is copied from another source must be between quotes and 

the original source must be cited. If a study's design or the manuscript's 

structure or language has been inspired by previous works, these works must be 

explicitly cited. 

All MDPI submissions are checked for plagiarism using the industry standard 

software iThenticate. If plagiarism is detected during the peer review process, 

the manuscript may be rejected. If plagiarism is detected after publication, an 

investigation will take place and action taken in accordance with our policies. 

o Image files must not be manipulated or adjusted in any way that could lead 

to misinterpretation of the information provided by the original image. 

 

Irregular manipulation includes: 1) introduction, enhancement, moving, or 

removing features from the original image; 2) grouping of images that should 

obviously be presented separately (e.g., from different parts of the same gel, or 

from different gels); or 3) modifying the contrast, brightness or color balance to 

obscure, eliminate or enhance some information. 

If irregular image manipulation is identified and confirmed during the peer 

review process, we may reject the manuscript. If irregular image manipulation 

https://www.mdpi.com/ethics#10
https://www.mdpi.com/ethics#16
https://www.mdpi.com/authors/rights
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is identified and confirmed after publication, we may correct or retract the 

paper. 

Our in-house editors will investigate any allegations of publication misconduct and may 

contact the authors' institutions or funders if necessary. If evidence of misconduct is 

found, appropriate action will be taken to correct or retract the publication. Authors are 

expected to comply with the best ethical publication practices when publishing with 

MDPI. 

Citation Policy 

Authors should ensure that where material is taken from other sources (including their own 

published writing) the source is clearly cited and that where appropriate permission is obtained. 

Authors should not engage in excessive self-citation of their own work. 

Authors should not copy references from other publications if they have not read the cited work. 

Authors should not preferentially cite their own or their friends’, peers’, or institution’s 

publications. 

Authors should not cite advertisements or advertorial material. 

In accordance with COPE guidelines, we expect that “original wording taken directly from 

publications by other researchers should appear in quotation marks with the appropriate 

citations.” This condition also applies to an author’s own work. COPE have produced a 

discussion document on citation manipulation with recommendations for best practice. 

[Return to top] 

Reviewer Suggestions 

During the submission process, please suggest three potential reviewers with the appropriate 

expertise to review the manuscript. The editors will not necessarily approach these referees. 

Please provide detailed contact information (address, homepage, phone, e-mail address). The 

proposed referees should neither be current collaborators of the co-authors nor have published 

with any of the co-authors of the manuscript within the last five years. Proposed reviewers 

should be from different institutions to the authors. You may identify appropriate Editorial 

Board members of the journal as potential reviewers. You may suggest reviewers from among 

the authors that you frequently cite in your paper. 

[Return to top] 

English Corrections 

To facilitate proper peer-reviewing of your manuscript, it is essential that it is submitted in 

grammatically correct English. Advice on some specific language points can be found here. 

If you are not a native English speaker, we recommend that you have your manuscript 

professionally edited before submission or read by a native English-speaking colleague. This 

can be carried out by MDPI's English editing service. Professional editing will enable 

reviewers and future readers to more easily read and assess the content of submitted 

manuscripts. All accepted manuscripts undergo language editing, however an additional fee 

will be charged to authors if very extensive English corrections must be made by the Editorial 

Office: pricing is according to the service here. 

[Return to top] 

Preprints and Conference Papers 

Genes accepts submissions that have previously been made available as preprints provided that 

they have not undergone peer review. A preprint is a draft version of a paper made available 

online before submission to a journal. 

MDPI operates Preprints, a preprint server to which submitted papers can be uploaded directly 

after completing journal submission. Note that Preprints operates independently of the journal 

https://publicationethics.org/files/COPE_DD_A4_Citation_Manipulation_Jul19_SCREEN_AW2.pdf
https://www.mdpi.com/journal/genes/instructions#top
https://www.mdpi.com/journal/genes/instructions#top
https://www.mdpi.com/authors/english-editing
https://www.mdpi.com/authors/english
https://www.mdpi.com/authors/english
https://www.mdpi.com/journal/genes/instructions#top
https://www.preprints.org/
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and posting a preprint does not affect the peer review process. Check the Preprints instructions 

for authors for further information. 

Expanded and high-quality conference papers can be considered as articles if they fulfill the 

following requirements: (1) the paper should be expanded to the size of a research article; (2) 

the conference paper should be cited and noted on the first page of the paper; (3) if the authors 

do not hold the copyright of the published conference paper, authors should seek the appropriate 

permission from the copyright holder; (4) authors are asked to disclose that it is conference 

paper in their cover letter and include a statement on what has been changed compared to the 

original conference paper. Genes does not publish pilot studies or studies with inadequate 

statistical power. 

Unpublished conference papers that do not meet the above conditions are recommended to be 

submitted to the Proceedings Series journals. 

[Return to top] 

Authorship 

MDPI follows the International Committee of Medical Journal Editors (ICMJE) guidelines 

which state that, in order to qualify for authorship of a manuscript, the following criteria should 

be observed: 

• Substantial contributions to the conception or design of the work; or the acquisition, 

analysis, or interpretation of data for the work; AND 

• Drafting the work or revising it critically for important intellectual content; AND 

• Final approval of the version to be published; AND 

• Agreement to be accountable for all aspects of the work in ensuring that questions 

related to the accuracy or integrity of any part of the work are appropriately investigated 

and resolved. 

Those who contributed to the work but do not qualify for authorship should be listed in the 

acknowledgments. More detailed guidance on authorship is given by the International Council 

of Medical Journal Editors (ICMJE). 

Any change to the author list should be approved by all authors including any who have been 

removed from the list. The corresponding author should act as a point of contact between the 

editor and the other authors and should keep co-authors informed and involve them in major 

decisions about the publication. We reserve the right to request confirmation that all authors 

meet the authorship conditions. 

For more details about authorship please check MDPI ethics website. 

Reviewers Recommendation 

Authors can recommend potential reviewers. Journal editors will check to make sure there are 

no conflicts of interest before contacting those reviewers, and will not consider those with 

competing interests. Reviewers are asked to declare any conflicts of interest. Authors can also 

enter the names of potential peer reviewers they wish to exclude from consideration in the peer 

review of their manuscript, during the initial submission progress. The editorial team will 

respect these requests so long as this does not interfere with the objective and thorough 

assessment of the submission. 

Editorial Independence 

Lack of Interference With Editorial Decisions 

Editorial independence is of utmost importance and MDPI does not interfere with editorial 

decisions. All articles published by MDPI are peer reviewed and assessed by our independent 

editorial boards, and MDPI staff are not involved in decisions to accept manuscripts. When 

making an editorial decision, we expect the academic editor to make their decision based only 

upon: 

https://www.preprints.org/instructions_for_authors
https://www.preprints.org/instructions_for_authors
https://www.mdpi.com/about/proceedings
https://www.mdpi.com/journal/genes/instructions#top
http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
https://www.mdpi.com/ethics#1
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• The suitability of selected reviewers; 

• Adequacy of reviewer comments and author response; 

• Overall scientific quality of the paper. 

In all of our journals, in every aspect of operation, MDPI policies are informed by the mission 

to make science and research findings open and accessible as widely and rapidly as possible. 

Editors and Editorial Staff as Authors 

Editorial staff or editors shall not be involved in processing their own academic work. 

Submissions authored by editorial staff/editors will be assigned to at least two independent 

outside reviewers. Decisions will be made by other Editorial Board Members who do not have a 

conflict of interest with the author. Journal staff are not involved in the processing of their own 

work submitted to any MDPI journals. 

Conflict of Interests 

According to The International Committee of Medical Journal Editors, “Authors should avoid 

entering into agreements with study sponsors, both for-profit and non-profit, that interfere with 

authors’ access to all of the study’s data or that interfere with their ability to analyze and 

interpret the data and to prepare and publish manuscripts independently when and where they 

choose.” 

All authors must disclose all relationships or interests that could inappropriately influence or 

bias their work. Examples of potential conflicts of interest include but are not limited to 

financial interests (such as membership, employment, consultancies, stocks/shares ownership, 

honoraria, grants or other funding, paid expert testimonies and patent-licensing arrangements) 

and non-financial interests (such as personal or professional relationships, affiliations, personal 

beliefs). 

Authors can disclose potential conflicts of interest via the online submission system during the 

submission process. Declarations regarding conflicts of interest can also be collected via 

the MDPI disclosure form. The corresponding author must include a summary statement in the 

manuscript in a separate section “Conflicts of Interest” placed just before the reference list. The 

statement should reflect all the collected potential conflict of interest disclosures in the form. 

See below for examples of disclosures: 

Conflicts of Interest: Author A has received research grants from Company A. Author B has 

received a speaker honorarium from Company X and owns stocks in Company Y. Author C has 

been involved as a consultant and expert witness in Company Z. Author D is the inventor of 

patent X. 

If no conflicts exist, the authors should state: 

Conflicts of Interest: The authors declare no conflicts of interest. 

[Return to top] 

Editorial Procedures and Peer-Review 

Initial Checks 

All submitted manuscripts received by the Editorial Office will be checked by a professional in-

house Managing Editor to determine whether they are properly prepared and whether they 

follow the ethical policies of the journal, including those for human and animal 

experimentation. Manuscripts that do not fit the journal's ethics policy or do not meet the 

standards of the journal will be rejected before peer-review. Manuscripts that are not properly 

prepared will be returned to the authors for revision and resubmission. After these checks, 

the Managing Editor will consult the journals’ Editor-in-Chief or Associate Editors to determine 

whether the manuscript fits the scope of the journal and whether it is scientifically sound. No 

judgment on the potential impact of the work will be made at this stage. Reject decisions at this 

stage will be verified by the Editor-in-Chief. 

https://mdpi-res.com/data/mdpi-disclosure-form.pdf
https://www.mdpi.com/journal/genes/instructions#top
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Peer-Review 

Once a manuscript passes the initial checks, it will be assigned to at least two independent 

experts for peer-review. A single-blind review is applied, where authors' identities are known to 

reviewers. Peer review comments are confidential and will only be disclosed with the express 

agreement of the reviewer. 

In the case of regular submissions, in-house assistant editors will invite experts, including 

recommendations by an academic editor. These experts may also include Editorial Board 

Members and Guest Editors of the journal. Potential reviewers suggested by the authors may 

also be considered. Reviewers should not have published with any of the co-authors during the 

past five years and should not currently work or collaborate with any of the institutions of the 

co-authors of the submitted manuscript. 

Optional Open Peer-Review 

The journal operates optional open peer-review: Authors are given the option for all review 

reports and editorial decisions to be published alongside their manuscript. In addition, 

reviewers can sign their review, i.e., identify themselves in the published review 

reports. Authors can alter their choice for open review at any time before publication, but once 

the paper has been published changes will only be made at the discretion of 

the Publisher and Editor-in-Chief. We encourage authors to take advantage of this opportunity 

as proof of the rigorous process employed in publishing their research. To guarantee impartial 

refereeing, the names of referees will be revealed only if the referees agree to do so, and after a 

paper has been accepted for publication. 

Editorial Decision and Revision 

All the articles, reviews and communications published in MDPI journals go through the peer-

review process and receive at least two reviews. The in-house editor will communicate the 

decision of the academic editor, which will be one of the following: 

• Accept after Minor Revisions: 

The paper is in principle accepted after revision based on the reviewer’s comments. 

Authors are given five days for minor revisions. 

• Reconsider after Major Revisions: 

The acceptance of the manuscript would depend on the revisions. The author needs to 

provide a point by point response or provide a rebuttal if some of the reviewer’s 

comments cannot be revised. Usually, only one round of major revisions is allowed. 

Authors will be asked to resubmit the revised paper within a suitable time frame, and 

the revised version will be returned to the reviewer for further comments. 

• Reject and Encourage Resubmission: 

If additional experiments are needed to support the conclusions, the manuscript will be 

rejected and the authors will be encouraged to re-submit the paper once further 

experiments have been conducted. 

• Reject: 

The article has serious flaws, and/or makes no original significant contribution. No offer 

of resubmission to the journal is provided. 

All reviewer comments should be responded to in a point-by-point fashion. Where the authors 

disagree with a reviewer, they must provide a clear response. 

Author Appeals 

Authors may appeal a rejection by sending an e-mail to the Editorial Office of the journal. The 

appeal must provide a detailed justification, including point-by-point responses to the reviewers' 

and/or Editor's comments. The Managing Editor of the journal will forward the manuscript and 

related information (including the identities of the referees) to the Editor-in-Chief, Associate 

Editor, or Editorial Board member. The academic Editor being consulted will be asked to give 

an advisory recommendation on the manuscript and may recommend acceptance, further peer-
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review, or uphold the original rejection decision. A reject decision at this stage is final and 

cannot be reversed. 

In the case of a special issue, the Managing Editor of the journal will forward the manuscript 

and related information (including the identities of the referees) to the Editor-in-Chief who will 

be asked to give an advisory recommendation on the manuscript and may recommend 

acceptance, further peer-review, or uphold the original rejection decision. A reject decision at 

this stage will be final and cannot be reversed. 

Production and Publication 

Once accepted, the manuscript will undergo professional copy-editing, English editing, 

proofreading by the authors, final corrections, pagination, and, publication on 

the www.mdpi.com website. 

[Return to top] 

Promoting Equity, Diversity and Inclusiveness Within MDPI Journals 

Our Managing Editors encourage the Editors-in-Chief and Associate Editors to appoint diverse 

expert Editorial Boards. This is also reflective in our multi-national and inclusive workplace. 

We are proud to create equal opportunities without regard to gender, ethnicity, sexual 

orientation, age, religion, or socio-economic status. There is no place for discrimination in our 

workplace and editors of MDPI journals are to uphold these principles in high regard. 

[Return to top] 

Resource Identification Initiative 

To improve the reproducibility of scientific research, the Resource Identification 

Initiative aims to provide unique persistent identifiers for key biological resources, including 

antibodies, cell lines, model organisms and tools. 

We encourage authors to include unique identifiers - RRIDs- provided by the Resource 

Identification Portal in the dedicated section of the manuscript. 

To help authors quickly find the correct identifiers for their materials, there is a 

single website where all resource types can be found and a ‘cite this’ button next to each 

resource, that contains a proper citation text that should be included in the methods section of 

the manuscript. 

[Return to top] 
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1. SUBMISSION AND PEER REVIEW PROCESS 

New submissions should be made via the Research Exchange submission 

portal submission.wiley.com/journal/JBG. Should your manuscript proceed to the revision 

stage, you will be directed to make your revisions via the same submission portal. You may 

check the status of your submission at anytime by logging on to submission.wiley.com and 

https://www.mdpi.com/
https://www.mdpi.com/journal/genes/instructions#top
https://www.mdpi.com/journal/genes/instructions#top
https://www.force11.org/group/resource-identification-initiative
https://www.force11.org/group/resource-identification-initiative
https://scicrunch.org/resources
https://scicrunch.org/resources
http://scicrunch.org/resources
https://www.mdpi.com/journal/genes/instructions#top
https://onlinelibrary.wiley.com/page/journal/14390388/homepage/forauthors.html#submission
https://onlinelibrary.wiley.com/page/journal/14390388/homepage/forauthors.html#aimsandscope
https://onlinelibrary.wiley.com/page/journal/14390388/homepage/forauthors.html#manuscript
https://onlinelibrary.wiley.com/page/journal/14390388/homepage/forauthors.html#preparing
https://onlinelibrary.wiley.com/page/journal/14390388/homepage/forauthors.html#editorial
https://onlinelibrary.wiley.com/page/journal/14390388/homepage/forauthors.html#licensing
https://onlinelibrary.wiley.com/page/journal/14390388/homepage/forauthors.html#postaccept
https://onlinelibrary.wiley.com/page/journal/14390388/homepage/forauthors.html#postpub
https://onlinelibrary.wiley.com/page/journal/14390388/homepage/forauthors.html#postpub
https://onlinelibrary.wiley.com/page/journal/14390388/homepage/forauthors.html#contact
https://submission.wiley.com/journal/JBG


168 

 

 

clicking the “My Submissions” button. For technical help with the submission system, please 

review our FAQs or contact submissionhelp@wiley.com. 

Data Protection and Privacy 

By submitting a manuscript to, or reviewing for, this publication, your name, email address, 

institutional affiliation, and other contact details the publication might require, will be used for 

the regular operations of the publication, including, when necessary, sharing with the publisher 

(Wiley) and partners for production and publication. The publication and the publisher 

recognize the importance of protecting the personal information collected from users in the 

operation of these services, and have practices in place to ensure that steps are taken to maintain 

the security, integrity, and privacy of the personal data collected and processed. You can learn 

more at https://authorservices.wiley.com/statements/data-protection-policy.html. 

Preprint Policy 

The Journal of Animal Breeding and Genetics will consider for review articles previously 

available as preprints. Authors may also post the submitted version of a manuscript to a 

preprint server at any time. Authors are requested to update any pre-publication versions with a 

link to the final published article. 

2. AIMS AND SCOPE 

The journal publishes original articles by international scientists on genomic selection, and any 

other topic related to breeding programmes, selection, quantitative genetics, genomics, 

diversity, evolution of domestic animals and analysis of efficiency and consequences of 

commercial breeding programs. Researchers, teachers, and the animal breeding industry will 

find the reports of interest. 

3. MANUSCRIPT CATEGORIES AND REQUIREMENTS 

The Journal of Animal Breeding and Genetics publishes: 

• Original Articles – articles should contain reports of new research findings or conceptual 

analyses that make a significant contribution to knowledge. Ideally, manuscripts should be 

around 20 typewritten pages or less – although, longer papers may be considered at the Editor’s 

discretion. 

• Book Reviews – books submitted for review are assigned to specialists in the same field. The 

reviewer does not receive financial remuneration for a review, but keeps the copy of the book 

sent to him or her for review. The review should include the complete bibliographical data on 

the book being reviewed: author’s surname and initials of prename(s). Title of the book, edition 

(if not the first edition), publisher, place of publication, year of publication, length in pages, 

number of figures and tables, type of binding (paperback, hardback), and retail price. 

4. PREPARING YOUR SUBMISSION 

The Journal of Animal Breeding and Genetics now offers Free Format submission for a 

simplified and streamlined submission process. 

Before you submit, you will need: 

• Your manuscript: this should be an editable file including text, figures, and tables, or 

separate files – whichever you prefer. All required sections should be contained in your 

manuscript, including abstract, introduction, methods, results, and conclusions. Figures 

and tables should have legends. Figures should be uploaded in the highest resolution 

possible. References may be submitted in any style or format, as long as it is consistent 

throughout the manuscript. Supporting information should be submitted in separate 

files. If the manuscript, figures or tables are difficult for you to read, they will also be 

difficult for the editors and reviewers, and the editorial office will send it back to you 

for revision. Your manuscript may also be sent back to you for revision if the quality of 

English language is poor. 

https://submissionhelp.wiley.com/
https://onlinelibrary.wiley.com/page/journal/14390388/homepage/submissionhelp@wiley.com
https://authorservices.wiley.com/statements/data-protection-policy.html
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• An ORCID ID, freely available at https://orcid.org. (Why is this important? Your 

article, if accepted and published, will be attached to your ORCID profile. Institutions 

and funders are increasingly requiring authors to have ORCID IDs.) 

• The title page of the manuscript, including: 

o Your co-author details, including affiliation and email address. (Why is this 

important? We need to keep all co-authors informed of the outcome of the peer 

review process.) 

o  Statements relating to our ethics and integrity policies, which may include any 

of the following: 

▪ data availability statement 

▪ funding statement 

▪ conflict of interest disclosure 

▪ ethics approval statement 

▪ permission to reproduce material from other sources 

▪ clinical trial registration 

(Why are these important? We need to uphold rigorous ethical standards for the research we 

consider for publication) 

To submit, login at https://submission.wiley.com/journal/JBG and create a new submission. 

Follow the submission steps as required and submit the manuscript. 

Manuscripts can be uploaded either as a single document (containing the main text, tables and 

figures), or with figures and tables provided as separate files. Should your manuscript reach 

revision stage, figures and tables must be provided as separate files. The main manuscript file 

can be submitted in Microsoft Word (.doc or .docx). 

 

5. EDITORIAL POLICIES AND ETHICAL CONSIDERATIONS 

Editorial Review and Acceptance 

The acceptance criteria for all papers is the quality and originality of the research and its 

significance to our readership. Except where otherwise stated, manuscripts are single-blind peer 

reviewed. Papers will only be sent to review if the Editor-in-Chief determines that the paper 

meets the appropriate quality and relevance requirements. Wiley's policy on confidentiality of 

the review process is available here. 

Data Sharing and Data Accessibility 

Journal of Animal Breeding and Genetics recognizes the many benefits of archiving research 

data. The journal expects you to archive all the data from which your published results are 

derived in a public repository. The repository that you choose should offer you guaranteed 

preservation (see the registry of research data repositories at https://www.re3data.org/) and 

should help you make it findable, accessible, interoperable, and re-useable, according to FAIR 

Data Principles (https://www.force11.org/group/fairgroup/fairprinciples). All accepted 

manuscripts are required to publish a data availability statement to confirm the presence or 

absence of shared data. If you have shared data, this statement will describe how the data can be 

accessed, and include a persistent identifier (e.g., a DOI for the data, or an accession number) 

from the repository where you shared the data. Authors will be required to confirm adherence to 

the policy. If you cannot share the data described in your manuscript, for example for legal or 

ethical reasons, or do not intend to share the data then you must provide the appropriate data 

availability statement. Journal of Animal Breeding and Genetics notes that FAIR data sharing 

allows for access to shared data under restrictions (e.g., to protect confidential or proprietary 

information) but notes that the FAIR principles encourage you to share data in ways that are as 

open as possible (but that can be as closed as necessary). 
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Sample statements are available here. Please note that the samples provided are examples of 

how the statements can be formatted – these can be modified accordingly depending on your 

requirements. If published, all statements will be placed in the heading of your manuscript.  

As the Journal of Animal Breeding and Genetics publishes research linked to commercial 

breeding programmes, in these cases, authors may not be able to share their underlying data 

publicly due to license restrictions. Therefore, please find an example data availability statement 

for such cases here: ‘The data that support the findings of this study are available from (name of 

third party company). Restrictions apply to the availability of these data, which were used under 

license for this study. Data are available from the corresponding author with the permission of 

(name of third party company).’  

If you are unsure of the suitability of your proposed data availability statement, please reach out 

to the journal’s Editorial Office for assistance: JABAG.office@wiley.com 

Data Citation 

Please also cite the data you have shared, like you would cite other sources that your article 

refers to, in your references section. You should follow the format for your data citations laid 

out in the Joint Declaration of Data Citation 

Principles, https://www.force11.org/datacitationprinciples: 

[dataset] Authors; Year; Dataset title; Data repository or archive; Version (if any); Persistent 

identifier (e.g. DOI) 

Human Studies and Subjects 

For manuscripts reporting medical studies involving human participants, we require a statement 

identifying the ethics committee that approved the study, and that the study conforms to 

recognized standards, for example: Declaration of Helsinki; US Federal Policy for the 

Protection of Human Subjects; or European Medicines Agency Guidelines for Good 

Clinical Practice. 

Images and information from individual participants will only be published where the authors 

have obtained the individual's free prior informed consent. Authors do not need to provide a 

copy of the consent form to the publisher, however in signing the author license to publish 

authors are required to confirm that consent has been obtained. Wiley has a standard patient 

consent form available. 

Animal Studies 

A statement indicating that the protocol and procedures employed were ethically reviewed and 

approved, and the name of the body giving approval, must be included in the Methods section of 

the manuscript. We encourage authors to adhere to animal research reporting standards, for 

example the ARRIVE reporting guidelines for reporting study design and statistical analysis; 

experimental procedures; experimental animals and housing and husbandry. Authors should 

also state whether experiments were performed in accordance with relevant institutional and 

national guidelines and regulations for the care and use of laboratory animals: 

• US authors should cite compliance with the US National Research Council's Guide for the 

Care and Use of Laboratory Animals, the US Public Health Service's Policy on Humane 

Care and Use of Laboratory Animals, and Guide for the Care and Use of Laboratory 

Animals. 

• UK authors should conform to UK legislation under the Animals (Scientific Procedures) Act 

1986 Amendment Regulations (SI 2012/3039). 

• European authors outside the UK should conform to Directive 2010/63/EU. 

Clinical Trial Registration 

We require that clinical trials are prospectively registered in a publicly accessible database and 

clinical trial registration numbers should be included in all papers that report their results. Please 

include the name of the trial register and your clinical trial registration number at the end of 
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your abstract. If your trial is not registered, or was registered retrospectively, please explain the 

reasons for this. 

Research Reporting Guidelines 

Accurate and complete reporting enables readers to fully appraise research, replicate it, and use 

it. We encourage authors to adhere to the following research reporting standards. 

• CONSORT 

• SPIRIT 

• PRISMA 

• PRISMA-P 

• STROBE 

• CARE 

• COREQ 

• STARD and TRIPOD 

• CHEERS 

• the EQUATOR Network 

• Future of Research Communications and e-Scholarship (FORCE11) 

• ARRIVE guidelines 

• National Research Council's Institute for Laboratory Animal Research guidelines: the 

Gold Standard Publication Checklist from Hooijmans and colleagues 

• Minimum Information Guidelines from Diverse Bioscience Communities (MIBBI) 

website; Biosharing website 

• REFLECT statement 

Species Names 

Upon its first use in the title, abstract and text, the common name of a species should be 

followed by the scientific name (genus, species and authority) in parentheses. For well-known 

species, however, scientific names may be omitted from article titles. If no common name exists 

in English, the scientific name should be used only. 

Genetic Nomenclature 

Sequence variants should be described in the text and tables using both DNA and protein 

designations whenever appropriate. Sequence variant nomenclature must follow the current 

HGVS guidelines; see http://varnomen.hgvs.org/, where examples of acceptable nomenclature 

are provided. 

Nucleotide Sequence Data 

Nucleotide sequence data can be submitted in electronic form to any of the three major 

collaborative databases: DDBJ, EMBL or GenBank. It is only necessary to submit to one 

database as data are exchanged between DDBJ, EMBL and GenBank on a daily basis. The 

suggested wording for referring to accession-number information is: ‘These sequence data have 

been submitted to the DDBJ/EMBL/GenBank databases under accession number U12345’. 

Addresses are as follows: 

DNA Data Bank of Japan (DDBJ) http://www.ddbj.nig.ac.jp 

EMBL Nucleotide Sequence Submissions http://www.ebi.ac.uk 

GenBank http://www.ncbi.nlm.nih.gov 

Conflict of Interest 

The Journal of Animal Breeding and Genetics requires that all authors disclose any potential 

sources of conflict of interest. Any interest or relationship, financial or otherwise that might be 

perceived as influencing an author's objectivity is considered a potential source of conflict of 

interest. These must be disclosed when directly relevant or directly related to the work that the 

authors describe in their manuscript. Potential sources of conflict of interest include, but are not 

limited to, patent or stock ownership, membership of a company board of directors, membership 

of an advisory board or committee for a company, and consultancy for or receipt of speaker's 
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fees from a company. The existence of a conflict of interest does not preclude publication. If the 

authors have no conflict of interest to declare, they must also state this at submission. It is the 

responsibility of the corresponding author to review this policy with all authors and collectively 

to disclose with the submission ALL pertinent commercial and other relationships. The Conflict 

of Interest statement should be included within the main text file of your submission. 

Funding 

Authors should list all funding sources in the Acknowledgments section. Authors are 

responsible for the accuracy of their funder designation. If in doubt, please check the Open 

Funder Registry for the correct 

nomenclature: http://www.crossref.org/fundingdata/registry.html 

Authorship 

The list of authors should accurately illustrate who contributed to the work and how. All those 

listed as authors should qualify for authorship according to the following criteria: 

1) Have made substantial contributions to conception and design, or acquisition of data, or 

analysis and interpretation of data; 

2) Been involved in drafting the manuscript or revising it critically for important intellectual 

content; 

3) Given final approval of the version to be published. Each author should have participated 

sufficiently in the work to take public responsibility for appropriate portions of the content; and 

4) Agreed to be accountable for all aspects of the work in ensuring that questions related to the 

accuracy or integrity of any part of the work are appropriately investigated and resolved. 

Contributions from anyone who does not meet the criteria for authorship should be listed, with 

permission from the contributor, in an Acknowledgments section (for example, to recognize 

contributions from people who provided technical help, collation of data, writing assistance, 

acquisition of funding, or a department chairperson who provided general support). Prior to 

submitting the article all authors should agree on the order in which their names will be listed in 

the manuscript. 

Additional authorship options 

Joint first or senior authorship: In the case of joint first authorship a footnote should be added to 

the author listing, e.g. ‘X and Y should be considered joint first author’ or ‘X and Y should be 

considered joint senior author.’ 

ORCID 

As part of our commitment to supporting authors at every step of the publishing process, 

the Journal of Animal Breeding and Genetics requires the submitting author (only) to provide an 

ORCID iD when submitting a manuscript. This takes around 2 minutes to complete. Find 

more information. 

Publication Ethics 

Journal of Animal Breeding and Genetics is a member of the Committee on Publication 

Ethics (COPE). Note this journal uses iThenticate’s CrossCheck software to detect instances of 

overlapping and similar text in submitted manuscripts. Read our Top 10 Publishing Ethics Tips 

for Authors here. Wiley’s Publication Ethics Guidelines can be found 

at https://authorservices.wiley.com/ethics-guidelines/index.html 

6. AUTHOR LICENSING 

If your paper is accepted, the author identified as the formal corresponding author will receive 

an email prompting them to log in to Author Services, where via the Wiley Author Licensing 

Service (WALS) they will be required to complete a copyright license agreement on behalf of 

all authors of the paper. 
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Authors may choose to publish under the terms of the journal’s standard copyright agreement, 

or Open Access under the terms of a Creative Commons License. 

General information regarding licensing and copyright is available here. To review the Creative 

Commons License options offered under Open Access, please click here. (Note that certain 

funders mandate that a particular type of CC license has to be used; to check this please 

click here.) 

Self-Archiving definitions and policies. Note that the journal’s standard copyright agreement 

allows for self-archiving of different versions of the article under specific conditions. Please 

click here for more detailed information about self-archiving definitions and policies. 

Open Access fees: If you choose to publish using Open Access you will be charged a fee. A list 

of Article Publication Charges for Wiley journals is available here. 

Funder Open Access: Please click here for more information on Wiley’s compliance with 

specific Funder Open Access Policies. 

7. PUBLICATION PROCESS AFTER ACCEPTANCE 

Accepted article received in production 

When your accepted article is received by Wiley’s production production team, you 

(corresponding authors) will receive an email asking you to login or register with Author 

Services. You will be asked to sign a publication licence at this point. 

Proofs 

Authors will receive an e-mail notification with a link and instructions for accessing HTML 

page proofs online. Page proofs should be carefully proofread for any copyediting or typesetting 

errors. Online guidelines are provided within the system. No special software is required, all 

common browsers are supported. Authors should also make sure that any renumbered tables, 

figures, or references match text citations and that figure legends correspond with text citations 

and actual figures. Proofs must be returned within 48 hours of receipt of the email. Return of 

proofs via e-mail is possible in the event that the online system cannot be used or accessed. 

Publication Charges 

Color figures may be published online free of charge; however, the journal charges for 

publishing figures in colour in print. If the author supplies colour figures at Early View 

publication, they will be invited to complete a colour charge agreement in RightsLink for 

Author Services. The author will have the option of paying immediately with a credit or debit 

card, or they can request an invoice. If the author chooses not to purchase color printing, the 

figures will be converted to black and white for the print issue of the journal. 

Early View 

The journal offers rapid publication via Wiley’s Early View service. Early View (Online 

Version of Record) articles are published on Wiley Online Library before inclusion in an issue. 

Once your article is published on Early View no further changes to your article are possible. 

Your Early View article is fully citable and carries an online publication date and DOI for 

citations. 

8. POST PUBLICATION 

Access and sharing 

When your article is published online: 

• You receive an email alert (if requested). 

• You can share your published article through social media. 

• As the author, you retain free access (after accepting the Terms & Conditions of use, you can 

view your article). 

• The corresponding author and co-authors can nominate up to ten colleagues to receive a 

publication alert and free online access to your article. 
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Article Promotion Support 

Wiley Editing Services offers professional video, design, and writing services to create 

shareable video abstracts, infographics, conference posters, lay summaries, and research news 

stories for your research – so you can help your research get the attention it deserves. 
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