

Notas de estudo

Método dos Gradientes Conjugados

Giselle Lopes da Cruz Wéllington Moutinho Dias

Conteúdo

1 Intro		odução	
2	2.1 2.2	risão de conceitos Sequências	
3	Cor	nvexidade	
	3.1 3.2	Conjuntos convexos	
4	Alg	oritmos	
	4.1	Algoritmos de descida	
	4.2	Métodos de busca unidirecional	
	4.3	Buscas Lineares de Armijo e Goldstein	
	4.4	Testes Numéricos	
5	Métodos de otimização irrestrita		
	5.1	Método de direções conjugadas	
	5.2	Revisão de variedade afim	
	5.3	Retomando as direções conjugadas	
	5.4	Algoritmo de gradientes conjugados	
	5.5	Extensão para funções não quadráticas	
	5.6	Complexidade Algorítimica	
	5.7	Convergência global do MGC para a busca linear de Armijo	
	0.1	5.7.1 Preparando terreno	
	5.8	Algoritmo	
	5.9	Convergência Global	
6	Trabalho do CNMAC 2023		
	6.1	Resumo	
	6.2	Resultados Principais	

1 Introdução

Otimização, direta ou indiretamente, faz parte do nosso dia a dia. Vários campos da ciência fazem uso das ferramentas apresentadas neste texto com o objetivo de ajudar na tomada de decisões.

Mais formalmente, podemos dizer que otimização consiste em encontrar pontos de mínimo ou de máximo de uma função real sobre um conjunto $\Omega \subset \mathbb{R}^n$. Isto pode ser colocado na forma.

minimizar
$$f(x)$$

sujeito a $x \in \Omega$.

Em geral, o conjunto Ω é definido por restrições de igualdade e/ou desigualdade, ou seja,

$$\Omega = \{ x \in \mathbb{R}^n | c_{\epsilon}(x) = 0, c_{\psi}(x) \le 0 \}.$$

Onde $c_{\epsilon}: \mathbb{R}^n \to \mathbb{R}^m$ e $c_{\epsilon}: \mathbb{R}^n \to \mathbb{R}^p$ são funções quaisquer.

Um caso particular é o problema irrestrito, quando $\Omega = \mathbb{R}^n$. O problema irrestrito pode ser considerado simples em comparação com o problema geral de *Programação Não Linear* (PNL); e o estudo de suas propriedades, bem como dos métodos que o resolvem, é de fundamental importância em otimização, uma vez que muitos métodos para resolver o problema geral de PNL fazem uso dos métodos que resolvem o caso irrestrito.

2 Revisão de conceitos

Neste capítulo apresentamos algumas definições básicas e alguns resultados de análise e Álgebra Linear relevantes para este trabalho são [1], [2], [3] e [4].

2.1 Sequências

Uma sequência em \mathbb{R}^n é uma aplicação $k \in \mathbb{N} \mapsto x^k \in \mathbb{R}^n$, definida em \mathbb{N} . Em outras palavras, uma sequência é uma aplicação cujo domínio é \mathbb{N} . Denotaremos uma sequência por $(x^k)_{k \in \mathbb{N}}$. Por conveniência, consideraremos $\mathbb{N} = \{0, 1, 2, 3, ...\}$.

2.2 Definições e resultados clássicos

Definição 2.1. Dizemos que o ponto $\bar{x} \in \mathbb{R}^n$ é o limite da sequência (x^k) quando, para todo $\epsilon > 0$ dado, é possível obter $\bar{k} \in \mathbb{N}$ tal que

$$k \ge \bar{k} \Rightarrow ||x^k - \bar{x}|| < \epsilon$$

Neste caso, também dizemos que a sequência (x^k) converge para \bar{x} e indicamos este fato por $x^k \to \bar{x}$ ou $\lim_{k \to \infty} x^k = \bar{x}$.

Vemos da definição 2.1 que o ponto $\bar{x} \in \mathbb{R}^n$ é o limite da sequência (x^k) se para cada $\epsilon > 0$, o conjunto $\mathbb{N}_1 = \{k \in \mathbb{N}; ||x^k - \bar{x}|| \ge \epsilon\}$ é finito, ou seja, fora da bola $B(\bar{x}, \epsilon) = \{k \in \mathbb{R}^n; ||x^k - \bar{x}|| \ge \epsilon\}$ só poderão estar, no máximo, os termos $x^0, ..., x^{\bar{k}-1}$.

Uma subsequência de (x^k) é a restrição desta sequência a um subconjunto infinito $\mathbb{N}' = \{k_0 < k_1 < ... < k_i < ...\} \subset \mathbb{N}$. Equivalentemente, uma subsequência de (x^k) é uma subsequência do tipo $(x^k)_{k \in \mathbb{N}'}$ ou $(x^{k_i})_{i \in \mathbb{N}}$, onde $(k_i)_{i \in \mathbb{N}}$ é uma sequência de inteiros positivos.

Teorema 2.1. Se uma sequência (x^k) converge para um limite \bar{x} , então toda subsequência $(x^{k_i})_{i\in\mathbb{N}}$ também converge para \bar{x} .

Demonstração. Como (x^k) converge, de acordo com a definição 2.1 dado $\epsilon > 0$, existe um $\bar{k} \in \mathbb{N}$ tal que, para todo $k \geq \bar{k}$ tem-se $||x^k - \bar{x}|| < \epsilon$. A respeito da subsequência (x^{k_i}) podemos dizer que, dado $i \geq \bar{k}$, temos $k_i \geq k_{\bar{k}} \geq \bar{k}$ (pois $k_i \geq i, \forall i \in \mathbb{N}$). Portanto, $||x^{k_i} - \bar{x}|| < \epsilon$

Exemplo 1

A sequência $x^k = (-1)^k + \frac{1}{k+1}$ tem dois pontos de acumulação e portanto não é convergente.

De fato, temos $x^{2i} \mapsto 1$ e $x^{2i+1} \mapsto -1$.

Exemplo 2 A sequência $(1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, ...)$ tem um único ponto de acumulação. Entretanto, não é convergente. Mostrando que, a convergência da sequência implica a convergência da subsequência, mas a recíproca é não verdadeira.

3 Convexidade

3.1 Conjuntos convexos

Definição 3.1. Um conjunto $C \in \mathbb{R}^n$ é dito **convexo** quando dados $x, y \in C$, o segmento $[x, y] = \{(1 - t)x + ty | t \in [0, 1]\}$ estiver inteiramente contido em C.

3.2 Funções convexas

As funções que trataremos agora tem ótimas propriedades, particularmente no contexto de otimização.

Definição 3.2 (Função convexa). Seja $C \subset \mathbb{R}^n$ um conjunto convexo. Dizemos que a função $f : \mathbb{R}^n \to \mathbb{R}$ é **convexa** em C quando

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y),$$

para todos $x, y \in C$ e $t \in [0, 1]$.

Teorema 3.1. Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável e $C \subset \mathbb{R}^n$ convexo. A função f é convexa em C se, e somente se,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

para todos $x, y \in C$.

Demonstração Seja f convexa. Para $x, y \in C$ e $t \in (0, 1]$, quaisquer, definindo d = y - x, temos $x + td \in C$ e

$$f(x+td) = f((1-t)x + ty) < (1-t)f(x) + tf(y) \Leftrightarrow tf(y) - tf(x) > f(x+td) - f(x)$$

Portanto,

$$f(y) - f(x) \ge \frac{f(x+td) - f(x)}{t} \Rightarrow \lim_{t \to 0^+} (f(y) - f(x)) \ge \lim_{t \to 0^+} \left(\frac{f(x+td) - f(x)}{t}\right)$$

$$f(y) - f(x) \ge \lim_{t \to 0^+} \left(\frac{f(x+td) - f(x)}{t} \right) = \nabla f(x)^T d = \nabla f(x)^T (y-x).$$

Para provar a recíproca, considere z = (1 - t)x + ty e observe que

$$f(x) \ge f(z) + \nabla f(z)^T (x - z) \text{ e } f(y) \ge f(z)^T (y - z).$$

Multiplicando a primeira por (1-t) e a segunda por t obtemos

$$f(x)(1-t) \ge f(z)(1-t) + \nabla f(z)^T(x-z)(1-t)$$
 e $f(y)t \ge f(z)t + \nabla f(z)^T(y-z)t$

$$\operatorname{Assim} \ (1-t)f(x) + tf(y) \geq (1-t)f(z) + tf(z) + \nabla f(z)^T(x-z) - t\nabla f(z)^T(x-z) + t\nabla f(z)^T(y-z)$$

Logo, $(1-t)f(x)+tf(y) \ge f(z)+t\nabla f(z)^T(\frac{x-z}{t}-x+z+y-z)=f(z)=f((1-t)x+ty)$, completando a demonstração.

Podemos interpretar geometricamente este resultado dizendo que uma função convexa está sempre acima da sua aproximação linear.

O teorema acima também tem uma consequência forte em otimização dada no seguinte resultado.

Corolário 3.1. Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função convexa, diferenciável e $C \subset \mathbb{R}^n$ convexo. Se $\nabla f(x^*)^T (y - x^*) \geq 0$, para todo $y \in C$, então x^* é um minimizador global de f em C. Em particular, todo ponto estacionário é minimizador global.

4 Algoritmos

4.1 Algoritmos de descida

Uma forma geral d construir um algoritmo consiste em escolher, a partir de cada ponto obtido, uma direção para dar o próximo passo. Uma possibilidade razoável é determinar uma direção segundo a qual f decresce.

Definição 4.1 (Direção de descida). Considere uma função $f : \mathbb{R}^n \to \mathbb{R}$, um ponto $\bar{x} \in \mathbb{R}^n$ e uma direção $d \in \mathbb{R}^n \setminus \{0\}$. Dizemos que d é uma **direção de descida** para f, a partir de \bar{x} , quando existe $\delta > 0$ tal que $f(\bar{x} + td) < f(\bar{x})$, para todo $t \in (0, \delta)$.

Teorema 4.1. Se $\nabla f(\bar{x})^T d < 0$, então d é uma direção de descida para f, a partir de \bar{x} .

Demonstração. Sabemos que

$$\nabla f(\bar{x})^T d = \frac{\partial f}{\partial d}(\bar{x}) = \lim_{t \to 0} \frac{f(\bar{x} + td) - f(\bar{x})}{t}$$

Pela hipótese e pela preservação de sinal, existe $\delta > 0$ tal que

$$\frac{f(\bar{x} + td) - f(\bar{x})}{t} < 0$$

para todo $t \in (-\delta, \delta), t \neq 0$. Portanto, $f(\bar{x} + td) < f(\bar{x})$, para todo $t \in (0, \delta)$, o que completa a demonstração.

4.2 Métodos de busca unidirecional

4.2.1 Busca exata - método da seção áurea

Definição 4.2 (função unimodal). Uma função contínua $\phi : [0, \infty) \mapsto \mathbb{R}$ é dita unimodal quando admite um conjunto de minimizadores $[t_1, t_2]$, estritamente decrescente em $[0, t_1]$ e estritamente crescente em $[t_2, \infty)$.

Vamos descrever o algoritmo da seção áurea. Suponha que um minimizador de ϕ pertence ao intervalo [a,b].

- 1. Considere $a < u < v < b \text{ em } [0, \infty)$;
- 2. Se $\phi(u) < \phi(v)$ então o trecho [v,b] não pode conter um minimizador e pode ser descartado;
- 3. Se $\phi(u) \ge \phi(v)$ então o trecho [a, u] pode ser descartado;
- 4. Particione o intervalo que ficou e repita o processo.

Vamos discutir agora como particionar o intervalo [a, b]. A obtenção deste intervalo, que deve conter um minimizador de ϕ , será tratada adiante.

Uma estratégia que parece natural é dividir o intervalo em três partes iguais, ou seja, definir

$$u = a + \frac{1}{3}(b - a)$$

$$v = a + \frac{2}{3}(b - a)$$

Assim, descartamos $\frac{1}{3}$ do intervalo corrente a cada etapa. Entretanto, esta forma de particionar o intervalo tem uma desvantagem. Precisamos fazer duas novas avaliações de função por etapa, pois o ponto que sobrou, u ou v, não pode ser aproveitado.

Uma estratégia que veremos ser mais inteligente consiste em escolher os pontos u e v que dividem o segmento [a,b] na razão áurea, de acordo com a seguinte definição.

Definição 4.3. Um ponto c divide o segmento [a,b] na razão áurea quando a razão entre o maior segmento e o segmento todo é igual à razão entre o menor e o maior dos segmentos. Tal razão é conhecida como o número de ouro e vale $\frac{\sqrt{5}-1}{2} \approx 0,618$.

Desta forma, temos que u e v devem satisfazer

$$\frac{b-u}{b-a} = \frac{u-a}{b-u} e^{\frac{v-a}{b-a}} = \frac{b-v}{v-a}$$
 (1)

Considerando θ_1 e θ_2 tais que

$$u = a + \theta_1(b - a) e v = a + \theta_2(b - a),$$
 (2)

obtemos $1 - \theta_1 = \frac{\theta_1}{1 - \theta_1}$ e $\theta_2 = \frac{1 - \theta_2}{\theta_2}$ pois

$$1 - \theta_1 = 1 - \left(\frac{u-a}{b-a}\right) = \frac{(b-a) - (u-a)}{b-a} = \frac{b-u}{b-a}$$

De acordo com (1) temos

$$1 - \theta_1 = \frac{b - u}{b - a} = \frac{u - a}{b - u} = \frac{\frac{u - a}{b - a}}{\frac{b - u}{u - a}} = \frac{\theta_1}{1 - \theta_1}$$

Por cálculos análogos mostramos que $\theta_2 = \frac{1-\theta_2}{\theta_2}$. Portanto,

$$\theta_1 = \frac{3 - \sqrt{5}}{2} \approx 0,382 \text{ e } \theta_2 = \frac{\sqrt{5} - 1}{2} \approx 0,618$$

Já que se $1 - \theta_1 = \frac{\theta_1}{1 - \theta_1}$ então $(1 - \theta_1)^2 = \theta_1$ e assim obtemos a equação $\theta_1^2 - 3\theta_1 + 1 = 0$ que possuem as raízes $\frac{3 \pm \sqrt{5}}{2}$ mas como $1 > \theta_1 > 0$ concluímos que $\theta_1 = \frac{3 - \sqrt{5}}{2}$ de maneira análoga obtemos o valor numérico de θ_2 .

Dito isso, note que

$$\theta_1 + \theta_2 = 1 \text{ e } \theta_2^2 = \theta_1$$
 (3)

Uma das vantagens da divisão na razão áurea em relação à divisão em três partes iguais é que descartamos mais de 38% do intervalo ao invés de 33,33%. Outra vantagem se refere a economia em avaliação de função como veremos a seguir.

4.3 Buscas Lineares de Armijo e Goldstein

Abaixo está apresentado o Algoritmos da busca de Armijo e Goldstein, respectivamente.

Algoritmo 1: MÉTODO DO GRADIENTE EQUIPADO COM A CONDIÇÃO DE ARMIJO (MGA)

- 1 Dado: $x_0 \in \mathbb{R}, \gamma, \rho_1 \in (0,1)$ e faça k=0
- 2 Repita enquanto $\nabla f(x_k) \neq 0$
- з Defina $d_k = -\nabla f(x_k)$
- 4 Determine o tamanho do passo $t_k > 0$ que satisfaça

$$f(x_k + t_k d_k) \le f(x_k) + \rho_1 t_k \nabla f(x_k)^T d_k$$

- 5 Faça $x_{k+1} = x_k + t_k d_k$
- 6 k = k + 1

Algoritmo 2: MÉTODO DO GRADIENTE EQUIPADO COM A CONDIÇÃO DE GOLDSTEIN (MGG)

- ı Dado: $x_0 \in \mathbb{R}, 0 < \rho_1 < \rho_2 < 1$ e faça k = 0
- 2 Repita enquanto $\nabla f(x_k) \neq 0$
- з Defina $d_k = -\nabla f(x_k)$
- 4 Determine o tamanho do passo $t_k > 0$ que satisfaça

$$f(x_k) + \rho_2 t_k \nabla f(x_k)^T d_k \le f(x_k + t_k d_k) \le f(x_k) + \rho_1 t_k \nabla f(x_k)^T d_k$$

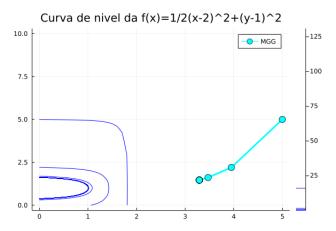
- **5** Faça $x_{k+1} = x_k + t_k d_k$
- 6 k = k + 1

Vamos apresentar alguns experimentos numéricos para compreender o Algoritmo da busca de Goldstein e para comparar a eficiência da busca de Goldstein com a busca de Armijo na minimização de funções. Para isto, chamaremos o método do gradiente equipado com a busca de Goldstein de MGG e o método do gradiente equipado com a busca de Armijo de MGA. Além disso, durante os experimentos apresentados, iremos adotar algumas regras que precisam ser seguidas para o método. São elas:

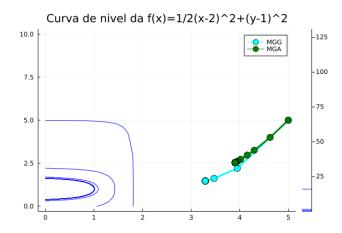
- 1. Valor inicial: Assuma que o ponto inicial é tomado de forma aleatória, exceto no Exemplo 1;
- 2. Número máximo de iteradas: A computação será interrompida depois de 6000 iteradas;

4.4 Testes Numéricos

Exemplo 1 - Inicialmente, tentamos minimizar a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x;y) = \frac{1}{2}(x-2)^2 + (y-1)^2$, que possui mínimo global no ponto $x^* = (2;1)$. Neste exemplo, o ponto inicial foi dado por $x_0 = (5;5)$ e o máximo de iteradas foi 6000. Notou-se que não foi possível chegar no ponto de mínimo global x^* pelo MGG, pois ele atingia o número máximo de iteradas ao chegar no ponto.

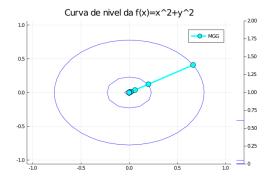


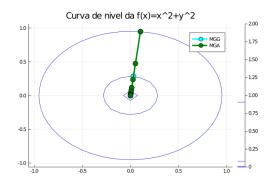
Ao compararmos o MGG com o MGA para a função anterior, com $x_0 = (5; 5)$ e máximo de iteradas igual a 6000, notou-se que não foi possível chegar no ponto de mínimo global x^* por nenhuma das buscas. Entretanto, o MGG apresentou um melhor desempenho, pois foi possível chegar no ponto (3, 2; 1, 4), enquanto o MGA chegou no ponto (3, 9; 2, 5).



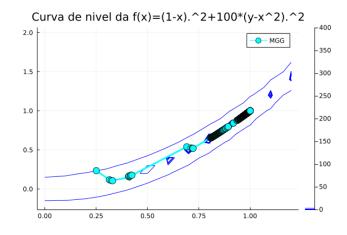
Exemplo 2 - Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x;y) = x^2 + y^2$. Ao tentar minimizar esta função com o MGG, notou-se que foi possível encontrar o ponto de mínimo com apenas 12 iteradas.

Ao tentar minimizar pela segunda vez a função anterior para compararmos o MGG e o MGA, obtivemos novos resultados. O MGG encontrou o ponto de mínimo com 13 iteradas, enquanto o MGA encontrou o ponto mínimo com 21 iteradas.

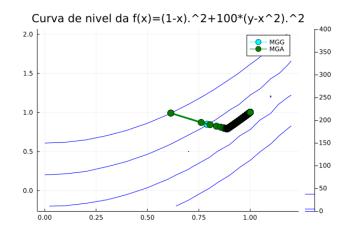




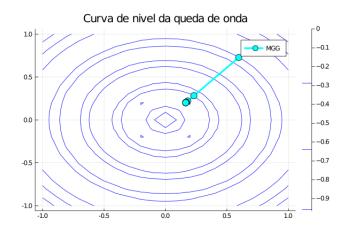
Exemplo 3 - Função Rosenbrock: Ao tentarmos minimizar a função de Rosenbrock $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x;y) = (1-x)^2 + 100(y-x^2)^2$, foi possível obter o ponto mínimo $x^* = (1;1)$ com 6000 iteradas.



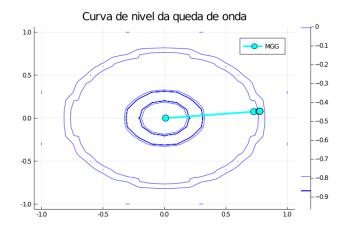
Ao tentar minimizar pela segunda vez a função anterior para compararmos o MGG e o MGA, obtivemos novos resultados. O MGA foi mais eficiente, pois encontrou o ponto mínimo x^* com 748 iteradas enquanto o MGG encontrou x^* com 5882 iteradas.



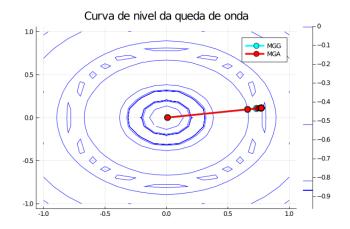
Exemplo 4 - Queda de onda Ao tentarmos minimizar a função "queda de onda" $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x;y) = -\frac{1+\cos(12\sqrt{x^2+y^2})}{0,5(x^2+y^2)+2}$ com o ponto inicial aleatório, encontramos o ponto (0,1;0,2) com 14 iteradas.



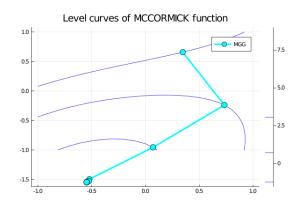
Tentando minimizar a função "queda de onda" com o ponto inicial sendo dado por $(1/100)^*rand(2,1)$, foi possível obter o ponto mínimo $x^* = (0;0)$ com 9 iteradas.



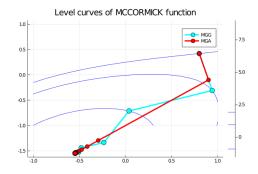
Ao tentar minimizar pela segunda vez a função anterior para compararmos o MGG e o MGA, sendo o ponto inicial dado por $(1/100)^*rand(2,1)$, obtivemos novos resultados. O MGG foi mais eficiente, pois encontrou o ponto mínimo x^* com 9 iteradas enquanto o MGA encontrou x^* com 29 iteradas.



Exemplo 5 - McCormick: Ao tentarmos minimizar a função "McCormick" $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x;y) = sen(x+y) + (x-y)^2 - 1, 5x + 2, 5y + 1$, foi possível obter o ponto mínimo global $x^* = (-0, 54719; -1, 54719)$ com 15 iteradas.

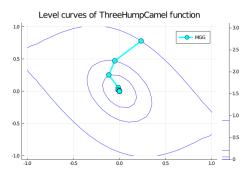


Exemplo 5 - Comparação com a busca de Armijo: Ao tentar minimizar pela segunda vez a função anterior para compararmos o MGG e o MGA, obtivemos novos resultados. O MGG foi mais eficiente, pois encontrou o ponto mínimo x^* com 18 iteradas enquanto o MGA encontrou x^* com 26 iteradas.

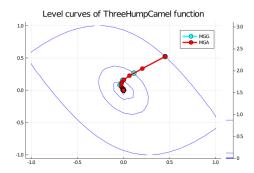


Exemplo 6 - Camelo de três corcundas: Ao tentarmos minimizar a função "Camelo de três corcundas" $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x;y) = 2x^2 - 1,05x^4 + \frac{x^6}{6} + xy + y^2$, foi possível

obter o ponto mínimo global $x^* = (0, 0)$ com 16 iteradas.



Exemplo 6 - Comparação com a busca de Armijo: Ao tentar minimizar pela segunda vez a função anterior para compararmos o MGG e o MGA, obtivemos novos resultados. O MGG foi mais eficiente, pois encontrou o ponto mínimo x^* com 16 iteradas enquanto o MGA encontrou x^* com 29 iteradas.



5 Métodos de otimização irrestrita

5.1 Método de direções conjugadas

Definição 5.1 (Vetores A-conjugados). Seja $A \in \mathbb{R}^{n \times n}$ uma matriz definida positiva. Dizemos que os vetores $d^0, d^1, ..., d^k \in \mathbb{R}^n \setminus \{0\}$ são A-conjugados se

$$(d^i)^T A d^j = 0,$$

para todos $i, j = 0, 1..., k, com i \neq j$.

Note que, no caso particular onde A é a matriz identidade, vetores A-conjugados é linearmente independente. Pois

$$(d^i)^T I_n d^j = 0 \Rightarrow (d^i)^T d^j = 0 \Rightarrow \langle d^i, d^j \rangle = 0 \Rightarrow d^i \in d^j$$
 são L.I.

Lema 5.1. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz definida positiva. Um conjunto qualquer de vetores A-conjugados é linearmente independente.

Demonstração. Sejam $d^0, d^1, ..., d^k \in \mathbb{R}^n \setminus \{0\}$ vetores A-conjugados. Considere constantes $a_0, a_1, ..., a_k \in \mathbb{R}$ tais que

$$a_0 d^0 + a_1 d^1 + \dots + a_k d^k = 0. (4)$$

Dado $i \in \{0, 1, ..., k\}$, multiplicando os dois membros da igualdade acima por $(d^i)^T A$, obtemos

$$a_i(d^i)^T A d^i = 0,$$

para visualizarmos melhor, suponhamos pois que i = 0, então por (4) temos

$$a_0 d^0 (d^0)^T A + a_1 d^1 (d^0)^T A + \dots + a_k d^k (d^0)^T A = 0.$$

$$a_0 d^0 A^T d^0 + a_1 d^1 A^T d^0 + \dots + a_k d^k A^T d^0 = 0.$$
(5)

Lembremos do que os autores do livro disseram acerca da positividade de uma matriz definida positiva: "Cabe salientar que a definição geral de positividade de uma matriz não exige que ela seja simétrica. No entanto, no contexto deste livro vamos supor a simetria quando considerarmos matrizes positivas."

Com essa suposição podemos escrever (5) como

$$a_0 d^0 A d^0 + a_1 d^1 A d^0 + \dots + a_k d^k A d^0 = 0$$

Como $d^0, d^1, ..., d^k \in \mathbb{R}^n \setminus \{0\}$ são vetores A-conjugados sabemos que $a_i(d^i)^T A d^i = 0 \ \forall i \neq j$ assim

$$a_0 d^0 A d^0 = 0 \Rightarrow a_0 = 0.$$

Por cálculos análogos concluímos que $a_i = 0 \ \forall i \in \{0, 1, ..., k\}$. Portanto, um conjunto qualquer de vetores A-conjugados é linearmente independente.

Veremos agora que o conhecimento de direções conjugadas permite obter o minimizador de uma função quadrática. Considere a função $f: \mathbb{R}^n \to \mathbb{R}$ dada por

$$f(x) = \frac{1}{2}x^T A x + b^T x + c,$$
(6)

com $A \in \mathbb{R}^{n \times n}$ definida positiva, $b \in \mathbb{R}^n$ e $c \in \mathbb{R}$. A função f tem um único minimizador x^* , que é global e satisfaz

$$Ax^* + b = \nabla f(x^*) = 0. \tag{7}$$

pois, como f é diferenciável, então

$$f(x + \Delta x) = f(x) + \nabla f(x)^T \Delta x + r(\Delta x) \text{ com } \lim_{\Delta x \to 0} \frac{r(\Delta x)}{||\Delta x||} = 0.$$

o que acarreta

$$\frac{1}{2}(x+\Delta x)^TA(x+\Delta x)+b^T(x+\Delta x)+c=\frac{1}{2}x^TAx+b^Tx+c+\nabla f(x)^T\Delta x+r(\Delta x).$$

$$\frac{1}{2}x^{T}A\Delta x + \frac{1}{2}\Delta x^{T}Ax + \frac{1}{2}\Delta x^{T}A\Delta x + b^{T}\Delta x = \nabla f(x)^{T}\Delta x + r(\Delta x). \tag{8}$$

Note que no contexto do corpo dos números reais e do livro

$$\Delta x^T A x = \langle \Delta x, A x \rangle = \langle A x, \Delta x \rangle = (A x)^T \Delta x = x^T A^T \Delta x = x^T A \Delta x.$$

Assim de (8) temos que

$$x^{T}A\Delta x + \frac{1}{2}A(\Delta x)^{2} + b^{T}\Delta x = \nabla f(x)^{T}\Delta x + r(\Delta x).$$

Dividindo ambos os membros da igualdade por Δx obtemos

$$x^{T}A + \frac{1}{2}A\Delta x + b^{T} = \nabla f(x)^{T} + \frac{r(\Delta x)}{\Delta x}.$$

Fazendo $\Delta x \to 0$ verificamos que

$$x^T A + b^T = \nabla f(x)^T \Rightarrow (x^T A + b^T)^T = \nabla f(x) \Rightarrow \nabla f(x) = Ax + b.$$

Assim, como x^* é minimizador podemos concluir que $\nabla f(x^*) = Ax^* + b = 0$. Dado um conjunto qualquer de direções A- conjugadas $\{d^0, d^1, ..., d^{n-1}\}$, vamos definir uma sequência finita do seguinte modo: tome $x^0 \in \mathbb{R}^n$ arbitrário e defina para k = 0, 1, ..., n-1,

$$x^{k+1} = x^k + t_k d^k. (9)$$

onde

$$t_k = \underset{t \in \mathbb{R}}{arg \, min} \{ f(x^k + td^k) \}.$$

Note que a minimização acima é calculada sobre toda a reta e não apenas para valores positivos de t, pois a direção d^k pode não ser de descida para f no ponto x^k . Além disso, como f é quadrática, podemos obter uma fórmula explícita para t_k . Para isso, defina $\varphi : \mathbb{R} \to \mathbb{R}$

por $\varphi(t) = f(x^k + td^k)$. Usando a definição de t_k , obtemos

$$\nabla f(x^{k+1})^T d^k = \nabla f(x^k + t_k d^k)^T d^k.$$

Observe que,

$$\varphi'(t_k) = \lim_{t \to 0} \frac{\varphi(t_k + t) - \varphi(t_k)}{t} = \lim_{t \to 0} \frac{f(x^k + (t_k + t)d^k) - f(x^k + t_k d^k)}{t}.$$

$$\varphi'(t_k) = \lim_{t \to 0} \frac{f(x^k + t_k d^k + t d^k) - f(x^k + t_k d^k)}{t} = \lim_{t \to 0} \frac{f(x^{k+1} + t d^k) - f(x^{k+1})}{t} = \nabla f(x^{k+1})^T d^k.$$

Note que t_k é minimizador de $\varphi : \mathbb{R} \to \mathbb{R}$ pois

$$t_k = \underset{t \in \mathbb{R}}{arg \min} \{ f(x^k + td^k) \} = \underset{t \in \mathbb{R}}{arg \min} \{ \varphi(t) \}.$$

Assim, é evidente que $\varphi'(t_k) = 0$ e consequentemente temos as seguintes igualdades

$$\nabla f(x^{k+1})^T d^k = \nabla f(x^k + t_k d^k)^T d^k = \varphi'(t_k) = 0.$$
 (10)

Por outro lado, temos

$$\nabla f(x^{k+1}) = A(x^k + t_k d^k) + b = \nabla f(x^k) + t_k A d^k.$$
(11)

Substituindo isto em (10), obtemos

$$\nabla f(x^{k+1})^T d^k = 0 \Rightarrow (\nabla f(x^k) + t_k A d^k)^T d^k = 0 \Rightarrow \nabla f(x^k)^T d^k + t_k (A d^k)^T d^k = 0.$$

$$\nabla f(x^k)^T d^k + t_k (d^k)^T A d^k = 0 :: t_k = -\frac{\nabla f(x^k)^T d^k}{(d^k)^T A d^k}.$$
 (12)

O teorema a seguir mostra que o algoritmo dado por (9) minimiza a quadrática definida em (6) com no máximo n passos.

Teorema 5.1. Considere a função quadrática dada por (6) e seu minimizador x^* , definido em (7). Dado $x^0 \in \mathbb{R}^n$, a sequência finita definida em (9) cumpre $x^n = x^*$.

Demonstração. Pelo Lema (5.1), o conjunto $\{d^0, d^1, ..., d^{n-1}\}$ é uma base de \mathbb{R}^n . Portanto,

existem escalares $\alpha_i \in \mathbb{R}, i = 0, 1, ..., n - 1$, tais que

$$x^* - x^0 = \sum_{i=0}^{n-1} \alpha_i d^i. (13)$$

Considere $k \in \{0, 1, ..., n-1\}$ arbitrário. Multiplicando a relação (13) por $(d^k)^T A$ pela esquerda e levando em conta que as direções são A-conjugadas, temos que

$$(d^k)^T A(x^* - x^0) = (d^k)^T A \sum_{i=0}^{n-1} \alpha_i d^i = \sum_{i=0}^{n-1} \alpha_i (d^k)^T A d^i = \alpha_k (d^k)^T A d^k.$$

Assim,

$$\alpha_k = \frac{(d^k)^T A (x^* - x^0)}{(d^k)^T A d^k}.$$
 (14)

Por outro lado, pela definição de x^k em (9), temos

$$x^{k+1} = x^k + t_k d^k \Rightarrow x^k = x^{k-1} + t_{k-1} d^{k-1} \Rightarrow x^k = x^{k-2} + t_{k-2} d^{k-2} + x^{k-1} + t_{k-1} d^{k-1}.$$

Repetindo esse processo k+1 vezes

$$x^{k} = x^{0} + t_{0}d^{0} + t_{1}d^{1} + \dots + t_{k-1}d^{k-1} = x^{0} + \sum_{i=0}^{k-1} t_{i}d^{i}.$$

que multiplicando por $(d^k)^T A$ pela esquerda, implica

$$(d^{k})^{T}Ax^{k} = (d^{k})^{T}A(x^{0} + \sum_{i=0}^{k-1} t_{i}d^{i}) = (d^{k})^{T}Ax^{0} + (d^{k})^{T}A\sum_{i=0}^{k-1} t_{i}d^{i} = (d^{k})^{T}Ax^{0} + \sum_{i=0}^{k-1} t_{i}(d^{k})^{T}Ad^{i}.$$

$$(d^{k})^{T}Ax^{k} = (d^{k})^{T}Ax^{0}.$$

pois as direções são A-conjugadas. Substituindo isto em (14) e usando (7), obtemos

$$\alpha_k = \frac{(d^k)^T A(x^* - x^0)}{(d^k)^T A d^k} = \frac{(d^k)^T (Ax^* - Ax^0)}{(d^k)^T A d^k} = \frac{(d^k)^T ((Ax^* + b) - Ax^0 - b)}{(d^k)^T A d^k}.$$

$$\alpha_k = \frac{(d^k)^T (Ax^* + b) - (d^k)^T Ax^0 - (d^k)^T b}{(d^k)^T Ad^k} = \frac{(d^k)^T \nabla f(x^*) - (d^k)^T Ax^k - (d^k)^T b}{(d^k)^T Ad^k}.$$

$$\alpha_k = -\frac{(d^k)^T (b + Ax^k)}{(d^k)^T A d^k} = -\frac{(d^k)^T \nabla f(x^k)}{(d^k)^T A d^k} = -\frac{\nabla f(x^k)^T d^k}{(d^k)^T A d^k} = t_k.$$

Portanto, de (13) segue que

$$x^* = x^0 + \sum_{i=0}^{n-1} \alpha_i d^i = x^0 + \sum_{i=0}^{n-1} t_i d^i = x^n$$

completando a demonstração.

5.2 Revisão de variedade afim

A noção de subespaço vetorial abrange as retas, planos e seus análogos multidimensionais apenas nos casos em que esses conjuntos contêm a origem. Para incluir retas, planos, etc. que não passam pela origem, tem-se a noção de **variedade afim**, que discutiremos agora.

Seja E um espaço vetorial. Se $x,y\in E$ e $x\neq y,$ a reta que une os pontos x,y é, por definição o conjunto

$$r = \{(1-t)x + ty; t \in \mathbb{R}\}.$$

Pondo v = y - x, podemos ver que $r = \{x - tx + ty; t \in \mathbb{R}\} = \{x + tv; t \in \mathbb{R}\}$

Definição 5.2 (Variedade Afim). Um subconjunto $V \subset E$ chama-se uma **variedade afim** quando V é convexo. Assim, $V \subset E$ é uma **variedade afim** se, e somente se, cumpre a seguinte condição:

$$x, y \in V, t \in \mathbb{R} \Rightarrow (1 - t)x + ty \in V.$$

Exemplo 5.1. Um exemplo óbvio de variedade afim é um subespaço vetorial. Ao contrário dos subespaços vetoriais, que nunca são vazios pois devem conter o vetor nulo, a definição acima é formulada de tal modo que o conjunto vazio a cumpre, logo \emptyset é uma variedade afim. Todo ponto $p \in E$ é uma variedade afim.

5.3 Retomando as direções conjugadas

Veremos agora um resultado que será usado para provar que o ponto x^k minimiza a quadrática não apenas em uma reta como também na variedade afim de dimensão k dada por $x^0 + [d^0, d^1, ..., d^{k+1}]$.

Lema 5.2. Dado $x^0 \in \mathbb{R}^n$, considere a sequência finita definita em (9). Então

$$\nabla f(x^k)^T d^j = 0$$

 $para\ todo\ j = 0, 1, ..., k - 1.$

Demonstração. Pela relação (10), temos que $\nabla f(x^k)^T d^{k-1} = 0$, provando a afirmação para j = k-1. Considere agora j < k-1. Usando (11) e o fato das direções serem A-conjugadas, obtemos

$$\nabla f(x^k)^T = (\nabla f(x^{k-1}) + t_{k-1}Ad^{k-1})^T \Rightarrow \nabla f(x^k)^T d^j = (\nabla f(x^{k-1}) + t_{k-1}Ad^{k-1})^T d^j$$

$$\nabla f(x^k)^T d^j = \nabla f(x^{k-1})^T d^j + t_{k-1} (d^{k-1})^T A d^j = \nabla f(x^{k-1})^T d^j \text{ pois, } j < k-1.$$

Assim, $\nabla f(x^k)^T d^j = \nabla f(x^{k-1})^T d^j = 0, \forall k$. O resultado desejado segue por indução.

Teorema 5.2. Dado $x^0 \in \mathbb{R}^n$, considere a sequência finita definida em (9). Então o ponto x^k minimiza f sobre a variedade afim $C = x^0 + [d^0, d^1, ..., d^{k-1}]$.

Demonstração. Note primeiro que, por (9), temos que $x^k \in C :: x^k = x^0 + \sum_{i=0}^{k-1} t_i d^i$. Assim,

$$x - x^k \in [d^0, d^1, ..., d^{k-1}],$$

para todo $x \in C$ por causa que se $x \in C \Rightarrow x = x^0 + \sum_{i=0}^{k-1} \alpha_i d^i \Rightarrow x - x^k = \sum_{i=1}^{k-1} (\alpha_i - t_i) d^i$. Portanto, pelo lema (5.2), temos que

$$\nabla f(x^k)^T (x - x^k) = \nabla f(x^k)^T \left(\sum_{i=1}^{k-1} (\alpha_i - t_i) d^i \right) = \sum_{i=1}^{k-1} (\alpha_i - t_i) \nabla f(x^k)^T d^i = 0$$

Como f é convexa e C é um conjunto convexo, podemos aplicar o Corolário (3.1) para concluir a demonstração.

A abordagem clássica do método de direções conjugadas que vimos aqui considera minimização unidirecional e, em seguida, estabelece a equivalência com a minimização em variedades afins de dimensão crescente, partindo de 1 e chegando em n. Contudo, é possível inverter a apresentação destes temas, começando com variedades e depois obtendo minimização unidirecional.

5.4 Algoritmo de gradientes conjugados

Vimos na seção 5.3 como obter o minimizador de uma função quadrática estritamente convexa a partir de um conjunto de direções conjugadas. Veremos um modo de gerar tais direções.

Dado $x_0 \in \mathbb{R}^n$, defina $d^0 = -\nabla f(x^0)$ e, para k = 0, 1, ..., n - 2,

$$d^{k+1} = -\nabla f(x^{k+1}) + \beta_k d^k, \tag{15}$$

onde x^{k+1} é dado por (9) e β^k é calculado de modo que d^k e d^{k+1} sejam A-conjugadas, ou seja,

$$(d^k)^T A (-\nabla f(x^{k+1}) + \beta_k d^k) = (d^k)^T A d^{k+1} = 0.$$

Isto nos fornece

$$(d^{k})^{T} A \beta_{k} d^{k} = (d^{k})^{T} A \nabla f(x^{k+1}) + (d^{k})^{T} A d^{k+1} = (d^{k})^{T} A \nabla f(x^{k+1})$$
$$\beta_{k} = \frac{(d^{k})^{T} A \nabla f(x^{k+1})}{(d^{k})^{T} A d^{k}}$$
(16)

Podemos agora apresentar o algoritmo de gradientes conjugados.

Algoritmo 3: Gradientes conjugados

- ı Dado: $x_0 \in \mathbb{R}^n$, faça $d^0 = -\nabla f(x^0)$
- k = 0
- з Repita enquanto $\nabla f(x_k) \neq 0$

4

$$t_k = -\frac{\nabla f(x^k)^T d^k}{(d^k)^T A d^k}$$
$$x^{k+1} = x^k + t_k d^k$$
$$\beta_k = \frac{(d^k)^T A \nabla f(x^{k+1})}{(d^k)^T A d^k}$$
$$d^{k+1} = -\nabla f(x^{k+1}) + \beta_k d^k$$
$$k = k+1$$

Salientamos que o algoritmo (3) está bem definido, isto é, se $\nabla f(x^k) \neq 0$, como veremos a seguir. Assim, o novo ponto pode ser calculado. Outra característica deste algoritmo, que não era necessariamente válida para direções conjugadas em geral, é que as direções geradas aqui são descida. De fato, usando a relação (10), obtemos,

$$\nabla f(x^k)^T d^k = \nabla f(x^k)^T (-\nabla f(x^k) + \beta_{k-1} d^{k-1}) = -||\nabla f(x^k)||^2 + \beta_{k-1} \nabla f(x^k)^T d^{k-1}$$

Pelo lema (5.2) temos que $\nabla f(x^k)^T d^{k-1} = 0$ o que acarreta

$$\nabla f(x^k)^T d^k = -||\nabla f(x^k)||^2 + \beta_{k-1} \nabla f(x^k)^T d^{k-1} = -||\nabla f(x^k)||^2 \le 0.$$
 (17)

O próximo resultado estabelece que as direções geradas pelo algoritmo são, de fato, A-conjugadas e que os gradientes são ortogonais.

Teorema 5.3. Se x^k e d^k foram gerados pelo algoritmo (7), então

$$\nabla f(x^k)^T \nabla f(x^j) = 0 \ e \ (d^k)^T A d^j = 0,$$

 $para\ todo\ j = 0, 1, ..., k - 1.$

Demonstração. Para simplificar a notação, vamos escrever $g_i = \nabla f(x^i)$. O resultado será provado usando indução em k. Para k = 1, usando (10) obtemos $g_1^T g_0 = -g_1^T d_0 = 0$ pois como $d^0 = -\nabla f(x^0) = -g_0$ de acordo com o algoritmo (7) assim, $\nabla f(x^1)^T d^0 = 0 \Rightarrow g_1^T d^0 = 0 \Rightarrow -g_1^T d^0 = 0 \Rightarrow g_1^T g_0 = 0$. Além disso, a definição de β_0 em (16) implica $(d^1)^T A d^0 = 0$. Esta afirmação não é tão trivial visto que

$$\beta_0 = \frac{(d^0)^T A \nabla f(x^1)}{(d^0)^T A d^0}.$$

além disso, $d^1 = -\nabla f(x^1) + \beta_0 d^0$ o que acarreta

$$d^{1} = -\nabla f(x^{1}) + \frac{(d^{0})^{T} A \nabla f(x^{1})}{(d^{0})^{T} A d^{0}} d^{0}.$$

Transpondo os membros da igualdade acima obtemos

$$(d^{1})^{T} = -\nabla f(x^{1})^{T} + \frac{(d^{0})^{T} A \nabla f(x^{1})}{(d^{0})^{T} A d^{0}} (d^{0})^{T}.$$

Multiplicando os membros por Ad^0 verificamos que

$$(d^{1})^{T}Ad^{0} = -\nabla f(x^{1})^{T}Ad^{0} + \frac{(d^{0})^{T}A\nabla f(x^{1})}{(d^{0})^{T}Ad^{0}}(d^{0})^{T}Ad^{0}.$$

por fim,

$$(d^{1})^{T}Ad^{0} = -\nabla f(x^{1})^{T}Ad^{0} + (d^{0})^{T}A\nabla f(x^{1}) = -\nabla f(x^{1})^{T}Ad^{0} + \nabla f(x^{1})^{T}Ad^{0} = 0.$$

Suponha agora que o resultado vale até k. Vamos provar que vale para k+1. Pela hipótese de indução, as direções $d^0, d^1, ..., d^k$ são A-conjugadas. Assim, podemos aplicar o Lema (5.2) e concluir que $g_{k+1}^T d^j = 0$ para j = 0, 1, ..., k. Assim, usando (15), obtemos

$$d^{k+1} = -\nabla f(x^{k+1}) + \beta_k d^k \Rightarrow -\nabla f(x^j) = d^j - \beta_{j-1} d^{j-1} \Rightarrow \nabla f(x^j) = -d^j + \beta_{j-1} d^{j-1}.$$

o que implica

$$g_{k+1}^T g_j = g_{k+1}^T (-d^j + \beta_{j-1} d^{j-1}) = 0, (18)$$

para j = 0, 1, ..., k. Finalmente, da definição de β_k em (16), temos que $(d^{k+1})^T A d^k = 0$. De fato, por cálculos análogos

$$d^{k+1} = -\nabla f(x^{k+1}) + \beta_k d^k = -\nabla f(x^{k+1}) + \frac{(d^k)^T A \nabla f(x^{k+1})}{(d^k)^T A d^k} d^k$$

consequentemente

$$(d^{k+1})^T = -\nabla f(x^{k+1})^T + \frac{(d^k)^T A \nabla f(x^{k+1})}{(d^k)^T A d^k} (d^k)^T$$

assim

$$(d^{k+1})^T A d^k = -\nabla f(x^{k+1})^T A d^k + \frac{(d^k)^T A \nabla f(x^{k+1})}{(d^k)^T A d^k} (d^k)^T A d^k = 0.$$

Além disso, para j < k, a hipótese de indução nos fornece

$$(d^{k+1})^T A d^j = (-g_{k+1} + \beta_k d^k)^T A d^j = -g_{k+1}^T A d^j + \beta_k (d^k)^T A d^j = -g_{k+1}^T A d^j.$$

Usando a relação (11) e o que foi estabelecido em (18), obtemos

$$(d^{k+1})^T A d^j = -g_{k+1}^T \left(\frac{g_{j+1} - g_j}{t_j} \right) = 0.$$

Pois, de $\nabla f(x^{k+1}) = \nabla f(x^k) + t_k A d^k$ obtemos que

$$Ad_j = \frac{g_{j+1} - g_j}{t_j}$$

e como $\boldsymbol{g}_{k+1}^T = \boldsymbol{0}$ para j = 1, 2, .., k observamos o seguinte

$$(d^{k+1})^T A d^j = -g_{k+1}^T \left(\frac{g_{j+1} - g_j}{t_j} \right) = \frac{(-g_{k+1}^T)(g_{j+1}) - (-g_{k+1}^T)(g_j)}{t_j}.$$

Sabemos que $j < k \Rightarrow j+1 \le k$, consequentemente $(-g_{k+1}^T)(g_{j+1}) = (-g_{k+1}^T)(g_j) = 0$, isso completa a demonstração. \square

O cálculo de β_k pela fórmula original, dada em (16), pode ser caro em virtude dos produtos pela matriz Hessiana. Apresentamos a seguir outras formas de calcular este coeficiente. Uma delas, proposta por Polak e Ribière, é dada por

$$\beta_k^{PR} = \frac{\nabla f(x^{k+1})^T (\nabla f(x^{k+1}) - \nabla f(x^k))}{\nabla f(x^k)^T \nabla f(x^k)}.$$
 (19)

Enquanto a outra, devida a Fletcher e Reeves, considera

$$\beta_k^{FR} = \frac{\nabla f(x^{k+1})^T \nabla f(x^{k+1})}{\nabla f(x^k)^T \nabla f(x^k)}$$
(20)

Tais expressões tem a vantagem computacional de utilizar apenas produto de vetores e coincidem no caso quadrático, o que é estabelecido no próximo teorema. No entanto, para funções não quadráticas tais expressões podem não ser iguais, o que fornece variantes de método de gradientes conjugados, conforme veremos na próxima seção.

Teorema 5.4. Se f é uma função quadrática, então as expressões (16), (19) e (20) coincidem, ou seja, $\beta_k = \beta_k^{PR} = \beta_k^{FR}$

Demonstração. Sabemos por (11) que $\nabla f(x^{k+1}) = \nabla f(x^k) + t_k A d^k$, ou seja, que

$$Ad^k = \frac{f(x^{k+1}) - \nabla f(x^k)}{t_k}.$$

Por (16) temos

$$\beta_k = \frac{(d^k)^T A \nabla f(x^{k+1})}{(d^k)^T A d^k}$$

Como $(d^k)^T A \nabla f(x^{k+1}) \in \mathbb{R}$ observamos que $((d^k)^T A \nabla f(x^{k+1}))^T = (d^k)^T A \nabla f(x^{k+1})$ dessa forma usando a simetria de A

$$\beta_k = \frac{\nabla f(x^{k+1})^T A d^k}{(d^k)^T A d^k} \\ = \frac{\nabla f(x^{k+1})^T (\nabla f(x^{k+1}) - \nabla f(x^k))}{(d^k)^T (\nabla f(x^{k+1}) - \nabla f(x^k))}$$

Usando o lema (5.2) podemos dizer que $(d^k)^T \nabla f(x^{k+1}) = 0$ além disso por (17) $\nabla f(x^k)^T d^k = -||\nabla f(x^k)||^2 = -\nabla f(x^k)^T \nabla f(x^k)$, prosseguindo os cálculos temos que

$$\beta_{k} = \frac{\nabla f(x^{k+1})^{T} (\nabla f(x^{k+1}) - \nabla f(x^{k}))}{(d^{k})^{T} \nabla f(x^{k+1}) - (d^{k})^{T} \nabla f(x^{k})}$$

$$= \frac{\nabla f(x^{k+1})^{T} (\nabla f(x^{k+1}) - \nabla f(x^{k}))}{\nabla f(x^{k})^{T} \nabla f(x^{k})}$$

$$= \beta_{k}^{PR}$$

Pelo teorema anterior $\nabla f(x^{k+1})^T \nabla f(x^j) = 0$ para todo j = 0, 1, ..., k em particular,

 $f(x^{k+1})^T \nabla f(x^k) = 0$ o que acarreta

$$\beta_{k} = \frac{\nabla f(x^{k+1})^{T} (\nabla f(x^{k+1}) - \nabla f(x^{k}))}{\nabla f(x^{k})^{T} \nabla f(x^{k})}$$

$$= \frac{\nabla f(x^{k+1})^{T} \nabla f(x^{k+1}) - f(x^{k+1})^{T} \nabla f(x^{k})}{\nabla f(x^{k})^{T} \nabla f(x^{k})}$$

$$= \frac{\nabla f(x^{k+1})^{T} \nabla f(x^{k+1})}{\nabla f(x^{k})^{T} \nabla f(x^{k})} = \beta_{k}^{FR}$$

Portanto, se f é quadrática, então $\beta_k = \beta_k^{PR} = \beta_k^{FR}$.

5.5 Extensão para funções não quadráticas

O método de gradientes conjugados visto na seção anterior pode ser adaptado para minimizar funções não quadráticas. Para tanto, é necessátio discutir como calcular o tamanho do passo t^k e o coeficiente β_k . A busca linear, que no caso quadrático era feita de forma fechada pela fórmula (12), agora pode ser executada por meio de métodos unidimensionais, como a busca inexata(Armijo). Para o cálculo de β_k , podemos utilizar a expressão de Polak-Ribière ou de Fletcher-Reeves. Combinando estas escolhas, obtemos diversas variantes do método.

Cabe ressaltar que estas variantes para funções não quadráticas não terminam necessariamente em n passos. Desta forma é usual considerar uma reinicialização das direções de busca a cada n passos, fazendo $\beta_k = 0$, o que equivale a tomar a direção do gradiente. Tais considerações dão origem ao seguinte algoritmo para minimização irrestrita.

Algoritmo 4: Gradientes conjugados para funções não quadráticas

```
1 Dado: x_0 \in \mathbb{R}^n, \epsilon > 0 faça d^0 = -\nabla f(x^0)
 2 k = 0
 з Repita enquanto ||\nabla f(x_k)|| > \epsilon
            Calcule o comprimento do passo t_k
 4
           Faça x^{k+1} = x^k + t_k d^k
 5
            Se (k+1) \mod n \neq 0
 6
                    \beta_k = \beta_k^{PR} ou \beta_k = \beta_k^{FR}
 7
            Senão
 8
                    \beta_k = 0
 9
           Defina d^{k+1} = -\nabla f(x^{k+1}) + \beta_k d^k
10
            k = k + 1
11
```

Note que se t_k for calculado por uma minimização unidirecional local, então as direções geradas pelo algoritmo acima são de descida, pois a relação (17) também se verifica neste

caso. Entretanto, a busca de Armijo não assegura tal propriedade. Para contornar esta dificuldade existem salva-guardas. De acordo com Jorge Nocedal e Stephen J. Wright se optarmos por $\beta_k = \beta_k^{FR}$ temos que

$$d^{k} = -\nabla f(x^{k}) + \beta_{k-1}^{FR} d^{k-1} \Rightarrow \nabla f(x^{k})^{T} d^{k} = -\nabla f(x^{k})^{T} \nabla f(x^{k}) + \beta_{k-1}^{FR} \nabla f(x^{k})^{T} d^{k-1}$$
$$\Rightarrow \nabla f(x^{k})^{T} d^{k} = -||\nabla f(x^{k})||^{2} + \beta_{k-1}^{FR} \nabla f(x^{k})^{T} d^{k-1}.$$

Se a busca linear for exata, então t^{k-1} é minimizador local de f sob a direção d^{k-1} pois teremos pelo lema (5.2) $\nabla f(x^k)^T d^{k-1} = 0$ e de acordo com a equação acima observaremos que $\nabla f(x^k)^T d^k < 0$, logo d^k é de fato uma direção de descida. Já na busca inexata o termo $\beta_{k-1}^{FR} \nabla f(x^k)^T d^{k-1}$ pode dominar o segundo $(-||\nabla f(x^k)||^2)$, em outras palavras, d^k pode ser uma direção de subida. Felizmente, podemos evitar esta situação se t_k satisfazer as condições fortes de Wolfe, que são

$$f(x^k + t_k d^k) \le f(x^k) + c_1 \alpha_k \nabla f(x^k)^T d^k, \tag{21}$$

$$|\nabla f(x^k + t_k d^k)^T d^k| \le -c_2 \nabla f(x^k)^T d^k, \tag{22}$$

onde $0 < c_1 < c_2 < \frac{1}{2}$.

Se optarmos por $\beta_k=\beta_k^{PR}$ as condições fortes de Wolfe não farantem sempre que d^k seja direção de descida. Para contornar este fato podemos definir β_k da seguinte forma

$$\beta_k = \max\{\beta_k^{PR}, 0\}. \tag{23}$$

assim uma simples adaptações das condições fortes de Wolfe asseguram que as direções geradas são de descida.

Desta forma, podemos reescrever o algoritmo (4) em dois métodos

Algoritmo 5: MÉTODO FLETCHER-REEVES

```
1 Dado: x_0 \in \mathbb{R}^n, \epsilon > 0 faça d^0 = -\nabla f(x^0)
 2 k = 0
 з Repita enquanto ||\nabla f(x_k)|| > \epsilon
           Calcule o comprimento do passo t_k por (21) e (22)
           Faça x^{k+1} = x^k + t_k d^k
 5
           Se (k+1) \mod n \neq 0
 6
                   \beta_k = \beta_k^{FR}
           Senão
 8
                   \beta_k = 0
 9
           Defina d^{k+1} = -\nabla f(x^{k+1}) + \beta_k d^k
10
           k = k + 1
11
```

Algoritmo 6: MÉTODO POLAK-RIBIÈRE

```
ı Dado: x_0 \in \mathbb{R}^n, \epsilon > 0 faça d^0 = -\nabla f(x^0)
 2 k = 0
 з Repita enquanto ||\nabla f(x_k)|| > \epsilon
           Calcule o comprimento do passo t_k por (21) e (22)
           Faça x^{k+1} = x^k + t_k d^k
 5
           Se (k+1) \mod n \neq 0
                   \beta_k = max\{\beta_k^{PR}, 0\}
 7
           Senão
 8
                   \beta_k = 0
 9
           Defina d^{k+1} = -\nabla f(x^{k+1}) + \beta_k d^k
10
           k = k + 1
11
```

5.6 Complexidade Algorítimica

Vamos considerar, novamente, aqui a função quadrática $f: \mathbb{R}^n \to \mathbb{R}$ dada por

$$f(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c,$$
(24)

com $A \in \mathbb{R}^{n \times n}$ definida positiva e simétrica, $b \in \mathbb{R}^n$ e $c \in \mathbb{R}$. Como já sabemos, o minimizador de f, indicado por x^* , é global e satisfaz

$$Ax^* + b = \nabla f(x^*) = 0.$$
 (25)

5.6.1 Espaços de Krylov

Os espaços de Krylov desempenham um papel importante em otimização, tanto no aspecto teórico quanto no computacional. Eles são definidos por potências de A multiplicadas pelo gradiente de f em um ponto dado.

Definição 5.3. Dados $x^0 \in \mathbb{R}^n$ e $k \in \mathbb{N}$. definimos o k-ésimo espaço de Krylov por

$$\mathcal{K}_k = [A(x^0 - x^*), A^2(x^0 - x^*), ..., A^k(x^0 - x^*)].$$

Note que, por (25), $A(x^0-x^*)=Ax^0$ $Ax^*=Ax^0+b=\nabla f(x^0)$. Assim, podemos escrever o espaço de Krylov como

$$\mathcal{K}_k = [\nabla f(x^0), A \nabla f(x^0), ..., A^{k-1} \nabla f(x^0)]. \tag{26}$$

Por que

$$A^{k}(x^{0} - x^{*}) = A^{k}x^{0} - A^{k}x^{*}$$

$$= A^{k}x^{0} + A^{k-1}(-Ax^{*})$$

$$= A^{k}x^{0} + A^{k-1}B$$

$$= A^{k-1}(Ax^{0} + B)$$

$$= A^{k-1}\nabla f(x^{0})$$

O próximo teorema relaciona o espaço gerado pelos gradientes $\nabla f(x^k)$ e o espaço gerado pelas direções d^k , obtidos pelo algoritmo de gradientes conjugados, com os espaços de Krylov.

Teorema 5.5. Considere as sequências (x^k) e (d^k) , geradas pelo algoritmo (7). Se o método não termina em x^{k-1} , então

(i)
$$\mathcal{K}_k = [\nabla f(x^0), \nabla f(x^1), ..., \nabla f(x^{k-1})];$$

(ii)
$$\mathcal{K}_k = [d^0, d^1, ..., d^{k-1}].$$

Demonstração. Vamos provar simultaneamente (i) e (ii) por indução. Isto é imediato para k = 1 em virtude de (26) e do algoritmo (7) pois teremos que $\mathcal{K}_1 = [\nabla f(x^0)] = [-\nabla f(x^0)] = [d^0]$. Suponha agora que o teorema é valido para um certo k. Pela relação (11) (substituindo k + 1 por k), temos

$$\nabla f(x^k) = \nabla f(x^{k-1}) + t_{k-1} A d^{k-1}.$$

Usando a hipótese de indução, podemos concluir que

$$\nabla f(x^{k-1}) \in \mathcal{K}_k \subset \mathcal{K}_{k+1} \in d^{k-1} \in \mathcal{K}_k$$
.

Pois

$$\nabla f(x^{k-1}) = 0 \cdot \nabla f(x^0) + 0 \cdot \nabla f(x^1) + \dots + 1 \cdot \nabla f(x^{k-1})$$
$$d^{k-1} = 0 \cdot d^0 + 0 \cdot d^1 + \dots + 1 \cdot d^{k-1}$$

Portanto, $Ad^{k-1} \in \mathcal{K}_{k+1}$, pois se aplicarmos as relações (11) e (15) podemos fazer

$$Ad^{k-1} = A(-\nabla f(x^{k-1}) + \beta_{k-2}d^{k-2})$$

= $A(-(\nabla f(x^{k-2}) + t_{k-2}Ad^{k-2}))) + \beta_{k-2}(-\nabla f(x^{k-2}) + \beta_{k-3}d^{k-3}))$

Prosseguindo com este processo e notando pelo algoritmo (7) que $\nabla f(x^1) = \nabla f(x^0) + t_0 A d^0 = \nabla f(x^0) - t_0 A \nabla f(x^0)$ e que $d^1 = -\nabla f(x^1) + \beta_0 d^0 = -\nabla f(x^1) - \beta_0 \nabla f(x^0)$ é fácil ver que podemos escrever qualquer d^k e $\nabla f(x^k)$ com k > 0 em termos de somas de produtos de potências de A com $\nabla f(x^0)$, além disso a cada vez que escrevemos $\nabla f(x^k)$ em termos de $\nabla f(x^{k-1})$ a matriz A "aparece" assim

$$Ad^{k-1} = \sum_{n=0}^{k} \alpha_n A^n \nabla f(x^0) \Rightarrow Ad^{k-1} \in \mathcal{K}_{k+1},$$

donde segue que $\nabla f(x^k) = \nabla f(x^{k-1}) + t_{k-1}Ad^{k-1} \in \mathcal{K}_{k+1}$. Isto prova que

$$[\nabla f(x^0), \nabla f(x^1), ..., \nabla f(x^k)] \subset \mathcal{K}_{k+1}.$$

Por outro lado, como o algoritmo não termina em x^k , os gradientes $\nabla f(x^j)$, j = 0, 1, ..., k são não nulos. Assim, pelo Teorema (5.3) eles geram um espaço de dimensão k + 1. Mas $dim(\mathcal{K}_{k+1}) \leq k + 1$. Logo

$$\mathcal{K}_{k+1} = [\nabla f(x^0), \nabla f(x^1), ..., \nabla f(x^k)],$$

provando (i). Finalmente, pela hipótese de indução, temos $d^{k-1} \in \mathcal{K}_k \subset \mathcal{K}_{k+1}$. Portanto, pelo algoritmo (7) e o que acabamos de provar, obtemos

$$d^k = -\nabla f(x^k) + \beta_{k-1} d^{k-1} \in \mathcal{K}_{k+1}$$

Além disso, por (17), os vetores d^{j} , j = 0, 1, ..., k são não nulos e pelo teorema (5.3), são A-

conjugados. Consequentemente, pelo Lema (5.1), eles geram um espaço de dimensão k+1. Assim,

$$\mathcal{K}_{k+1} = [d^0, d^1, ..., d^k],$$

completando a demonstração.

Estamos interessados em discutir as propriedades de minimização de f na variedade afim

$$V_k = x^0 + \mathcal{K}_k \tag{27}$$

Considere \mathcal{P}_k o conjunto dos polinômios $p: \mathbb{R} \to \mathbb{R}$ de grau menor do que ou igual a k tais que p(0) = 1, ou seja,

$$\mathcal{P}_k = \left\{ 1 + \sum_{i=1}^k a_i t^i | a_i \in \mathbb{R}, i = 1, ..., k \right\}.$$
 (28)

Lema 5.3. Temos $x \in V_k$ se, e somente se,

$$x - x^* = p(A)(x^0 - x^*),$$

para algum polinômio $p \in \mathcal{P}_k$.

Demonstração: Dado $x \in V_k$ temos

$$x = x^{0} + a_{1}A(x^{0} - x^{*}) + a_{2}A^{2}(x^{0} - x^{*}) + \dots + a_{k}A^{k}(x^{0} - x^{*}).$$

Subtraindo x^* de ambos os membros, obtemos

$$x - x^* = (x^0 - x^*) + a_1 A(x^0 - x^*) + a_2 A^2(x^0 - x^*) + \dots + a_k A^k(x^0 - x^*)$$
$$= \left(1 + \sum_{i=1}^k a_i t^i\right) (x^0 - x^*).$$

A recíproca se prova de modo análogo.

Lema 5.4. Considere $x^k = \underset{x \in V_k}{arg min} \{f(x^k)\}$. Então,

$$f(x^k) - f(x^*) \le \frac{1}{2}(x^0 - x^*)^T A(p(A))^2 (x^0 - x^*),$$

para todo polinômio $p \in \mathcal{P}_k$.

Demonstração: Considere $p \in \mathcal{P}_k$ arbitrário. Pelo lema anterior, o ponto

$$x = x^* + p(A)(x^0 - x^*)$$
(29)

pertence à variedade V_k . Como x^k é minimizador em V_k (pois $x^k = \underset{x \in V_k}{arg min} \{f(x^k)\}\)$, temos $f(x^k) \leq f(x)$, donde segue que

$$f(x^k) - f(x^*) \le f(x) - f(x^*) \tag{30}$$

Pela definição de f em (24) e (25), podemos escrever

$$f(x) - f(x^*) = \left(\frac{1}{2}x^T A x + b^T x + c\right) - \left(\frac{1}{2}(x^*)^T A (x^*) + b^T (x^*) + c\right)$$
$$= \frac{1}{2}x^T A x + b^T x - \frac{1}{2}(x^*)^T A (x^*) - b^T (x^*)$$
$$= \frac{1}{2}x^T A x - \frac{1}{2}(x^*)^T A x - \frac{1}{2}x^T A x^* + \frac{1}{2}(x^*)^T A x^*$$

5.7 Convergência global do MGC para a busca linear de Armijo

Em 1999, Dai-Yuan criou uma nova fórmula para β_k para que se obtenha a convergência global do método dos gradientes conjugados com a busca linear de Armijo, pois os propostos por Fletcher-Reeves(FR), Polak- Ribière-Polyak (PRP), Hestenes-Stiefel(HS) não é possível obter a convergência global. Assim, veremos adiante os principais resultados que foram obtidos [5].

5.7.1 Preparando terreno

Em [5] o d_k é definido da seguinte forma:

$$d_k = \begin{cases} -g_k & \text{se } \mathbf{k} = 0, \\ -g_k + \beta_k d_{k-1} & \text{se } k > 0, \end{cases}$$

com β_k um escalar e g_k o gradiente da função.

Segundo o artigo vários autores propuseram vários métodos dos quais o escalar β_k pode ser definido, entre eles foram destacados os seguintes: Fletcher-Reeves(FR), Polak-Ribière-

Polyak (PRP), Hestenes-Stiefel. Eis os valores β_k propostos:

$$\begin{split} \beta_k^{FR} &= \frac{||g_k||^2}{||g_{k-1}||^2}, \qquad \qquad \beta_k^{PRP} &= \frac{g_k^T y_{k-1}}{||g_{k-1}||^2}, \\ \beta_k^{HS} &= \frac{g_k^T y_{k-1}}{d_{k-1}^T y_{k-1}}, \qquad \qquad \beta_k^{CD} &= -\frac{||g_k||^2}{d_{k-1}^T g_{k-1}}. \end{split}$$

De modo que $||\cdot||$ é a norma Euclidiana e $y_{k-1} = g_k - g_{k-1}$.

Em seguida os autores fazem uma contextualização, citando o trabalho de outros autores e destacando alguns de seus resultados, dentre estes:

- Powell mostrou que os métodos PRP e HS n\u00e3o converge globalmente quando o comprimento de passo \u00e9 dado pela busca exata;
- Gilbert e Nocedal mostraram que o método PRP é globalmente convergente se β_k^{PRP} é restringido a ser um valor não-negativo com α_k satisfazendo Wolfe;
- Dai e Yuan provaram que ambos os métodos CD e FR convergem globalmente se a busca strong wolfe for utilizada

Em 1999, Dai e Yuan (DY) propuseram uma fórmula para β_k :

$$\beta_k^{DY} = \frac{||g_k||^2}{d_{L-1}^T y_{k-1}}. (31)$$

Para o método DY, o comprimento de passo é computado pela busca linear Wolfe definida abaixo:

$$f(x_k + \alpha_k d_k) \le f(x_k) + \delta \alpha_k g(x_k)^T d_k$$
.

$$g(x_k + \alpha_k d_k)^T d_k \ge \sigma g(x_k)^T d_k. \tag{32}$$

onde $0 < \delta < \sigma < 1$.

O método DY produz uma direção de descida d_k que satisfaz:

$$g_k^T d_k = \beta_k^{DY} g_{k-1}^T d_{k-1} = \frac{||g_k||^2}{d_{k-1}^T y_{k-1}} g_{k-1}^T d_{k-1}$$
(33)

Além disso, eles provaram que seu método converge globalmente usando Wolfe.

Vamos verificar a igualdade $g_k^T d_k = \beta_k^{DY} g_{k-1}^T d_{k-1} = \frac{||g_k||^2}{d_{k-1}^T y_{k-1}} g_{k-1}^T d_{k-1}$. Note que,

$$\begin{split} g_k^T d_k &= g_k^T (-g_k + \beta_k^{DY} d_{k-1}) \\ &= -||g_k||^2 + \beta_k^{DY} g_k^T d_{k-1} \\ &= -||g_k||^2 + \frac{||g_k||^2}{d_{k-1}^T y_{k-1}} g_k^T d_{k-1} \\ &= ||g_k||^2 \left(-1 + \frac{g_k^T d_{k-1}}{d_{k-1}^T g_k - d_{k-1}^T g_{k-1}} \right) \\ &= ||g_k||^2 \left(\frac{d_{k-1}^T g_{k-1} - d_{k-1}^T g_k + g_k^T d_{k-1}}{d_{k-1}^T y_{k-1}} \right) = \frac{||g_k||^2}{d_{k-1}^T y_{k-1}} d_{k-1}^T g_{k-1} = \beta_k^{DY} g_{k-1}^T d_{k-1} \end{split}$$

No entanto, nenhum resultado de convergência global foi mostrado em relação a Armijo, que nada mais é do que encontrar um α_k que satisfaça a desigualdade

$$f(x_k + \alpha_k d_k) \le f(x_k) + \delta \alpha_k g_k^T d_k \tag{34}$$

em que $\delta \in (0,1)$. A busca de Armijo não assegura que $d_{k-1}^T y_{k-1} > 0$ e não garante que a direção gerada seja de descida. Mas a busca de Armijo é importante devido a sua simplicidade.

Para assegurar que d_k seja uma direção de descida, motivados pela ideia de Dong-Hui Li e Masao Fukushima os autores definem d_k por

$$d_{k} = \begin{cases} -g_{k} + \beta_{k}^{DY} d_{k-1} & \text{se } d_{k-1}^{T} y_{k-1} \ge \epsilon_{1} ||d_{k-1}|| ||g_{k-1}||, \\ -gk & \text{caso contrário}, \end{cases}$$
(35)

em que ϵ_1 é uma constante positiva pequena. Este método será chamado de "cautious DY method".

5.8 Algoritmo

Algoritmo 7: CAUTIOUS DY METHOD

- 1 Dado: $\delta \in (0,1), \epsilon > 0, \epsilon_1 > 0$ e $x_0 \in \mathbb{R}^n$
- 2 Faça: k=0
- 3 Repita enquanto $||g_k|| \ge \epsilon$

4

$$d_k = \begin{cases} -g_k + \beta_k^{DY} d_{k-1} & \text{se } d_{k-1}^T y_{k-1} \ge \epsilon_1 ||d_{k-1}|| ||g_{k-1}||, \\ -gk & \text{caso contrário}, \end{cases}$$

5
$$\alpha_k \in \{\alpha \in \mathbb{R} | f(x_k + \alpha d_k) \le f(x^k) + \delta \alpha g_k^T d_k\} \cap \mathbb{R}_+^*$$
6 $x_{k+1} = x_k + \alpha_k d_k$
7 $k = k+1$

As direções geradas pelo algoritmo são de descida para todo k, logo a sequência $\{f(x_k)\}$ é decrescente. Além disso, pela condição de Armijo temos

$$-\sum_{k=0}^{\infty} \alpha_k g_k^T d_k < \infty \tag{36}$$

se f é limitada inferiormente. Em particular:

$$\lim_{k \to \infty} \alpha_k g_k^T d_k = 0. \tag{37}$$

Vamos mostrar por indução que as direções geradas pelo algoritmo são de descida para todo k, para isso, seja $A = \{k \in \mathbb{N} | g_k^T d_k < 0\}$. Note que $0 \in A$, pois $d_0 = -g_0 \Rightarrow g_k^T d_k = -||g_k||^2 < 0$. Sob a hipótese de que $k-1 \in A$, ou seja, $g_{k-1}^T d_{k-1} < 0$ temos que. Se $d_k = -g_k$, então $g_k^T d_k < 0$. Caso $d_k = -g_k + \beta_k^{DY} d_{k-1}$, então sabemos por (35) que

$$d_{k-1}^T y_{k-1} = d_{k-1}^T (g_k - g_{k-1}) \ge \epsilon_1 ||d_{k-1}|| ||g_{k-1}|| \Rightarrow d_{k-1}^T y_{k-1} > 0.$$

Como $d_{k-1}^T y_{k-1} > 0$ podemos afirmar que

$$\begin{aligned} \frac{1}{d_{k-1}^T y_{k-1}} &> 0 \Rightarrow \frac{||g_k||^2}{d_{k-1}^T y_{k-1}} > 0\\ &\Rightarrow \frac{||g_k||^2}{d_{k-1}^T y_{k-1}} g_{k-1}^T d_{k-1} g_k^T d_k < 0 \end{aligned}$$

Portanto, as direções geradas pelo algoritmo são de fato de descida para todo k. Assim,

 $\{f(x_k)\}\$ é uma sequência decrescente.

Pela condição de Armijo, temos

$$f(x_k + \alpha_k d_k) \leq f(x_k) + \delta \alpha_k g_k^T d_k \Rightarrow \frac{f(x_{k+1}) - f(x_k)}{\delta} \leq \alpha_k g_k^T d_k$$

$$\Rightarrow \frac{f(x_k) - f(x_{k+1})}{\delta} \geq -\alpha_k g_k^T d_k$$

$$\Rightarrow \sum_{k=0}^{\infty} \frac{f(x_k) - f(x_{k+1})}{\delta} \geq \sum_{k=0}^{\infty} -\alpha_k g_k^T d_k$$

$$\Rightarrow \sum_{k=0}^{\infty} \frac{f(x_k) - f(x_{k+1})}{\delta} \geq -\sum_{k=0}^{\infty} \alpha_k g_k^T d_k$$

Note que $\sum_{k=0}^{\infty} f(x_k) - f(x_{k+1}) = f(x_0) - f(x_n)$ em que $n \to \infty$, mas como f é limitada inferiormente,

$$\lim_{n \to \infty} f(x_n) = \min(f(x)), x \in \mathbb{R}^n.$$

Consequentemente, pelo teste da comparação

$$\sum_{k=0}^{\infty} \frac{f(x_k) - f(x_{k+1})}{\delta} = \frac{f(x_0) - \min\left(f(x)\right)}{\delta} \ge -\sum_{k=0}^{\infty} \alpha_k g_k^T d_k :: -\sum_{k=0}^{\infty} \alpha_k g_k^T d_k < \infty$$

Como $-\sum_{k=0}^{\infty}\alpha_kg_k^Td_k<\infty$ podemos afirmar que

$$\lim_{k \to \infty} -\alpha_k g_k^T d_k = 0 \Rightarrow \lim_{k \to \infty} \alpha_k g_k^T d_k = 0$$

5.9 Convergência Global

Para provarem a convergência global do algoritmo os autores precisaram assumir que o conjunto de nível

$$\Omega = \{ x \in \mathbb{R}^n | f(x) \le f(x_0) \}$$

é limitado.

Em alguma vizinhança $N \in \Omega$, f é continuamente diferenciável e seus gradientes são Lipschitz contínuo, ou seja, existe uma constante L > 0 tal que

$$||g(x) - g(y)|| \le L||x - y||, \forall x, y \in N.$$
 (38)

Como $\{f(x_k)\}$ é uma sequência decrescente, é evidente que a sequência $\{x_k\}$ gerada pelo algoritmo está contida em Ω . Além disso, como Ω é limitado existe uma constante $\gamma_1 > 0$ tal

que

$$||g(x)|| \le \gamma_1, \forall x \in \Omega. \tag{39}$$

Pois, $\Omega = \{x \in \mathbb{R}^n | f(x) \le f(x_0)\}\$ e como a sequência $\{f(x_k)\}\$ é decrescente temos,

$$f(x_0) \ge f(x_0) > f(x_1) > f(x_2) > \dots > f(x_k) > \dots$$

Portanto, $\{x_k\} \subset \Omega$. Ademais, a limitação superior do gradiente em Ω se deve ao fato do mesmo ser limitado.

Por conveniência, definiram o conjunto de índices

$$K = \{i | d_{i-1}^T y_{i-1} \ge \epsilon_1 | |d_{i-1}| | ||g_{i-1}|| \}. \tag{40}$$

assim podemos reescrever a equação (9) em termos de K como:

$$d_k = \begin{cases} -g_k + \beta_k^{DY} d_{k-1} & \text{se } k \in K, \\ -gk & \text{caso contrário,} \end{cases}$$

$$(41)$$

Agora enunciaremos um lema proposto e provado por Dai e Yuan.

Lema 5.5. Suponha que x_i é o ponto inicial em que Ω é limitado. Considerando o método DY (2-4), se existem constantes positivas γ e $\bar{\gamma}$, tais que $\gamma \leq ||g_k|| \leq \bar{\gamma}$ e $g_k^T d_k < 0$ para todo k suficientemente grande, então existe uma constante $\delta_1 > 0$ tal que, para todo $k \geq i$,

$$d_k^T g_k \le -\delta_1 ||g_k||^2 \tag{42}$$

Deste lema, é possível estabelecer a convergência do algoritmo atráves do seguinte teorema.

Teorema 5.6. Seja $\{x_k\}$ uma sequência gerada pelo Algoritmo 1 e $\Omega = \{x \in \mathbb{R}^n | f(x) \le f(x_0)\}$ é limitado, então temos

$$\liminf_{k \to \infty} ||g_k|| = 0$$
(43)

Demonstração: Se $K = \{i | d_{i-1}^T y_{i-1} \ge \epsilon_1 | |d_{i-1}| | ||g_{i-1}|| \}$ é finito, então a convergêcia global do Algoritmo 1 vem da teoria do método do gradiente. Se K for infinito iremos fazer a prova por contradição.

Suponhamos que (43) é falsa, ou seja, $\lim \inf_{k\to\infty} ||g_k|| \neq 0$. Com isso, existe uma constante $\gamma > 0$ tal que $||g_k|| \geq \gamma$, para todo k suficientemente grande.

Do fato que $||g(x)|| \le \gamma_1, \forall x \in \Omega$, há a existência de constantes γ e γ_1 tais que $\gamma \le ||g_k|| \le \gamma_1$ e mostramos que $g_k^T d_k < 0$ para todo k, assim pelo lema, existe uma constante $\delta_1 > 0$ tal

que para todo k suficientemente grande $d_k^T g_k \leq -\delta_1 ||g_k||^2$.

Para continuar a prova, antes iremos mostrar que $g_k^t d_k \to 0$. Sabemos que $\lim_{k \to \infty} \alpha_k g_k^T d_k = 0$.

$$\liminf_{k \in K, k \to \infty} \alpha_k > 0 \Rightarrow \lim_{k \in K, k \to \infty} g_k^T d_k = 0.$$

Pois, se o produto de dois números reais é nulo, então um dos fatores é nulo.

Retomando, obtemos do lema que $d_k^T g_k \leq -\delta_1 ||g_k||^2$ para um k suficientemente grande. Observe que,

$$d_k^T g_k \le -\delta_1 ||g_k||^2 \le 0.$$

O que acarreta,

$$0 = \lim_{k \in K, k \to \infty} d_k^T g_k \le \lim_{k \in K, k \to \infty} -\delta_1 ||g_k||^2 \le \lim_{k \in K, k \to \infty} 0 = 0$$

Pelo teorema do sanduíche, $\lim_{k\in K, k\to\infty} -\delta_1 ||g_k||^2 = 0$ e portanto,

$$\lim_{k \in K, k \to \infty} ||g_k|| = 0.$$

Logo, 0 é ponto de aderência da sequência $\{||g_k||\}$, mas $||g_k|| \ge 0, \forall x \in \mathbb{R}^n$, portanto,

$$\liminf_{k \in K, k \to \infty} ||g_k|| = 0.$$

Agora iremos mostrar o segundo caso.

Se $\liminf_{k\in K, k\to\infty} \alpha_k = 0$, existe um conjunto de índices infinito $\bar K\subset K$, tal que

$$\lim_{k \in \bar{K}, k \to \infty} \alpha_k = 0 \tag{44}$$

Limitando $||d_k||$. Então temos pelo fato de $\beta_k^{DY} = \frac{||g_k^2||}{d_{k-1}^T y_{k-1}}$, da limitação da norma do gradiente $(\gamma \leq ||g(x)|| \leq \gamma_1, \forall x \in \Omega)$ e, por fim, da condição necessária para que a direção

conjugada seja escolhida $(d_{k-1}^Ty_{k-1} \geq \epsilon_1 ||d_{k-1}||||g_{k-1}||)$ que

$$\begin{split} ||d_{k}|| &= ||-g_{k} + \beta_{k}^{DY}d_{k-1}|| \\ &\leq ||-g_{k}|| + ||\beta_{k}^{DY}d_{k-1}|| \\ &\leq \gamma_{1} + ||\frac{||g_{k}^{2}||}{d_{k-1}^{T}y_{k-1}}d_{k-1}|| \\ &\leq \gamma_{1} + \frac{||g_{k}||^{2} \cdot ||d_{k-1}||}{||d_{k-1}^{T}y_{k-1}||} \\ &\leq \gamma_{1} + \frac{\gamma_{1}^{2} \cdot ||d_{k-1}||}{||d_{k-1}^{T}y_{k-1}||} \\ &\leq \gamma_{1} + \gamma_{1}^{2} \cdot \frac{||d_{k-1}||}{\epsilon_{1}||d_{k-1}||||g_{k-1}||} \\ &\leq \gamma_{1} + \frac{\gamma_{1}^{2}}{\epsilon_{1}\gamma} \triangleq c_{1}, \forall k \in \bar{K} \end{split}$$

Temos da equação $f(x_k + \alpha_k d_k) \leq f(x_k) + \delta \alpha_k g_k^T d_k$ que para $k \in \bar{K}$ teremos,

$$f(x_k + \rho^{-1}\alpha_k d_k) - f(x_k) > \rho^{-1}\delta\alpha_k g_k^T d_k \tag{45}$$

Pois, $\alpha_k = max(\{\rho^i|i \in \mathbb{N}\})$ com $\rho \in (0,1)$ e como $\rho^{-1}\alpha_k > max(\{\rho^i|i \in \mathbb{N}\})$ sabemos que este parâmetro de comprimento de passo não será aceito porque trata-se do parâmetro anterior (se houver) que foi testado e rejeitado.

Considere $f: \mathbb{R}^n \to \mathbb{R}$ contínua e $\bar{x}, d \in \mathbb{R}^n$. Se f é diferenciável no segmento $(\bar{x}, \bar{x} + d)$, então existe $t \in (0,1)$ tal que

$$f(\bar{x}+d) - f(\bar{x}) = g(\bar{x}+d)^T d$$

Pelo TVM, para $k \in K$ suficientemente grande, existe $\theta_k \in (0,1)$ tal que

$$f(x_k + \rho^{-1}\alpha_k d_k) - f(x_k) = \rho^{-1}\alpha_k g(x_k + \theta \rho^{-1}\alpha_k d_k)^T d_k$$

= $\rho^{-1}\alpha_k g_k^T d_k + \rho^{-1}\alpha_k (g(x_k + \theta \rho^{-1}\alpha_k d_k) - g_k)^T d_k$
 $\leq \rho^{-1}\alpha_k g_k^T d_k + L\rho^{-2}\alpha_k^2 ||d_k||^2,$

onde L é a constante de Lipschitz de q.

A igualdade $f(x_k + \rho^{-1}\alpha_k d_k) - f(x_k) = \rho^{-1}\alpha_k g(x_k + \theta \rho^{-1}\alpha_k d_k)^T d_k$ pode ser obtida do TVM fazendo $\bar{x} = x_k$, $d = \rho^{-1}\alpha_k d_k$. Já a igualdade $\rho^{-1}\alpha_k g(x_k + \theta \rho^{-1}\alpha_k d_k)^T d_k = \rho^{-1}\alpha_k g_k^T d_k + \rho^{-1}\alpha_k g_k^T d_k$

 $\rho^{-1}\alpha_k(g(x_k+\theta\rho^{-1}\alpha_kd_k)-g_k)^Td_k$ pode ser obtida da seguinte maneira.

$$\begin{split} \rho^{-1}\alpha_{k}g(x_{k}+\theta\rho^{-1}\alpha_{k}d_{k})^{T}d_{k} &= \rho^{-1}\alpha_{k}(g_{k}^{T}d_{k}+g(x_{k}+\theta_{k}\rho^{-1}\alpha_{k}d_{k})^{T}d_{k}-g_{k}^{T}d_{k})\\ &= \rho^{-1}\alpha_{k}(g_{k}^{T}d_{k}+(g(x_{k}+\theta_{k}\rho^{-1}\alpha_{k}d_{k})^{T}-g_{k}^{T})d_{k})\\ &= \rho^{-1}\alpha_{k}(g_{k}^{T}d_{k}+(g(x_{k}+\theta_{k}\rho^{-1}\alpha_{k}d_{k})-g_{k})^{T}d_{k})\\ &= \rho^{-1}\alpha_{k}g_{k}^{T}d_{k}+\rho^{-1}\alpha_{k}(g(x_{k}+\theta_{k}\rho^{-1}\alpha_{k}d_{k})-g_{k})^{T}d_{k}) \end{split}$$

Na sequência, a desigualdade,

$$\rho^{-1}\alpha_k g_k^T d_k + \rho^{-1}\alpha_k (g(x_k + \theta_k \rho^{-1}\alpha_k d_k) - g_k)^T d_k \le \rho^{-1}\alpha_k g_k^T d_k + L\rho^{-2}\alpha_k^2 ||d_k||^2$$
(46)

pode ser obtida pela seguinte afirmação que será apresentada abaixo, os gradientes são Lipschitz-contínuo em alguma vizinhaça de Ω e pela desigualdade de Cauchy-Schwarz.

$$(g(x_k + \theta_k \rho^{-1} \alpha_k d_k) - g_k)^T d_k > 0$$

$$(47)$$

Pois sabemos que,

$$f(x_k + \rho^{-1}\alpha_k d_k) - f(x_k) = \rho^{-1}\alpha_k g(x_k + \theta \rho^{-1}\alpha_k d_k)^T d_k$$
$$> \delta \rho^{-1}\alpha_k g_k^T d_k$$
$$= (\delta - 1)\rho^{-1}\alpha_k g_k^T d_k + \rho^{-1}\alpha_k g_k^T d_k$$

O que acarreta,

$$\rho^{-1} \alpha_k g(x_k + \theta \rho^{-1} \alpha_k d_k)^T d_k - \rho^{-1} \alpha_k g_k^T d_k = \rho^{-1} \alpha_k (g(x_k + \theta_k \rho^{-1} \alpha_k d_k) - g_k)^T d_k$$
$$> (\delta - 1) \rho^{-1} \alpha_k g_k^T d_k$$

Portanto,

$$(g(x_k + \theta_k \rho^{-1} \alpha_k d_k) - g_k)^T d_k > (\delta - 1)g_k^T d_k > 0.$$

Consequentemente,

$$(g(x_k + \theta_k \rho^{-1} \alpha_k d_k) - g_k)^T d_k = |(g(x_k + \theta_k \rho^{-1} \alpha_k d_k) - g_k)^T d_k|$$

$$= |\langle g(x_k + \theta_k \rho^{-1} \alpha_k d_k) - g_k, d_k \rangle|$$

$$\leq ||g(x_k + \theta_k \rho^{-1} \alpha_k d_k) - g_k|| \cdot ||d_k||$$

$$\leq L||\theta_k \rho^{-1} \alpha_k d_k|| \cdot ||d_k||$$

$$= L \cdot \theta_k \rho^{-1} \alpha_k ||d_k||^2$$

$$\leq L \cdot \rho^{-1} \alpha_k ||d_k||^2.$$

Prosseguindo,

$$f(x_k + \rho^{-1}\alpha_k d_k) - f(x_k) = \rho^{-1}\alpha_k g_k^T d_k + \rho^{-1}\alpha_k (g(x_k + \theta \rho^{-1}\alpha_k d_k) - g_k)^T d_k$$

$$\leq \rho^{-1}\alpha_k g_k^T d_k + \rho^{-1}\alpha_k (L \cdot \rho^{-1}\alpha_k ||d_k||^2)$$

$$= \rho^{-1}\alpha_k g_k^T d_k + L\rho^{-2}\alpha_k^2 ||d_k||^2$$

Substituindo a desigualdade acima em (45), obtemos

$$\delta \rho^{-1} \alpha_k g_k^T d_k < f(x_k + \rho^{-1} \alpha_k d_k) - f(x_k) \le \rho^{-1} \alpha_k g_k^T d_k + L \rho^{-2} \alpha_k^2 ||d_k||^2$$

Assim,

$$0 < f(x_k + \rho^{-1}\alpha_k d_k) - f(x_k) \le \rho^{-1}\alpha_k g_k^T d_k + L\rho^{-2}\alpha_k^2 ||d_k||^2 - \delta\rho^{-1}\alpha_k g_k^T d_k \tag{48}$$

Dessa desigualdade teremos,

$$0 \le \rho^{-1} \alpha_k g_k^T d_k + L \rho^{-2} \alpha_k^2 ||d_k||^2 - \delta \rho^{-1} \alpha_k g_k^T d_k$$
$$0 \le \rho^{-1} \alpha_k g_k^T d_k (1 - \delta) + L \rho^{-2} \alpha_k^2 ||d_k||^2$$

Assim,

$$\Rightarrow \rho^{-1}\alpha_k g_k^T d_k (1-\delta) + L\rho^{-2}\alpha_k^2 ||d_k||^2 \ge 0$$

$$\Rightarrow \frac{L\rho^{-2}\alpha_k^2 ||d_k||^2}{\rho^{-2}\alpha_k} \ge \frac{\rho^{-1}\alpha_k g_k^T d_k (1-\delta)}{\rho^{-2}\alpha_k}$$

$$\Rightarrow \alpha_k \ge \frac{-(1-\delta)\rho g_k^T d_k}{L||d_k||^2}$$

Obtemos das equações $d_k^T g_k \leq -\delta_1 ||g_k||^2$ e $||d_K|| \leq \gamma_1 + \frac{\gamma_1^2}{\epsilon_1 \gamma} \triangleq c_1, \forall k \in K$ para k suficientemente grande teremos,

$$\alpha_k \ge \frac{-(1-\delta)\rho g_k^T d_k}{L||d_k||^2} \ge \frac{\delta_1(1-\delta)\rho||g_k||^2}{L||d_k||^2} \ge \frac{\delta_1(1-\delta)\rho\gamma^2}{Lc_1^2} > 0$$

O que contradiz a equação $\lim_{k \in \bar{K}, k \to \infty} \alpha_k = 0$. \square

6 Trabalho do CNMAC 2023

Vamos dar uma visão geral do artigo "Some properties of a new conjugate gradient method" dos autores Y. H. Dai e Y. Yuan, publicado pela revista Advances in Nonlinear Programming em 1998.

6.1 Resumo

- Nesse artigo é provado provado que o novo Método dos Gradientes Conjugados proposto por Dai e Yuan produz uma direção de descida a cada iteração para problemas estritamente convexos. E a convegência global pode ser provada utilizando a busca de Goldstein.
- Além do mais, se a função for uniformemente convexa é utilizada a busca de Armijo para garantir a convergência do método.

6.2 Resultados Principais

6.2.1 Informações Importantes

Problema irrestrito:

$$\min f(x), x \in \mathbb{R} \tag{49}$$

em que $f:\mathbb{R}^n \to \mathbb{R}$ é uma função continuamente diferenciável cujo gradiente será denotado por g

Fórmula iterativa:

$$x_{k+1} = x_k + \alpha_k d_k \tag{50}$$

o valor de α_k é o comprimento de passo (calculado por alguma busca linear).

A direção d_k é definida por

$$d_k = \begin{cases} -g_k & \text{se } k = 1, \\ -g_k + \beta_k d_{k-1} & \text{se } k \ge 2, \end{cases}$$
 (51)

em que $\beta_k^{DY} = \frac{||g_k||^2}{d_{k-1}^T y_{k-1}}$ é um escalar proposto por Dai e Yuan (DY) em 1999.

A seguir, será apresentada uma hipótese da qual a função objetivo deve satisfazer para o estabelecimento da convergencia global do algoritmo:

Suposição 1.1 A função objetivo é limitada no conjunto de nível $\mathcal{L} = \{x \in \mathbb{R}^n : f(x) \le f(x_1)\}$; em alguma vizinhança \mathcal{N} de \mathcal{L} , a função é continuamente diferenciável e seus gradientes (denotado por g) são Lipschitz contínuo, ou seja, existe uma constante L > 0 tal que

$$||g(x) - g(y)|| \le L||x - y||, \forall x, y \in \mathcal{N}$$

$$(52)$$

Nos teoremas a seguir, sempre admitiremos que

$$||g_k|| \neq 0, \forall k, \tag{53}$$

pois caso contrário, um ponto estacionário já teria sido encontrado.

Teorema 6.1. Suponha que a partir do ponto x_1 a Suposição 1.1 é válida. Considerando o método β_k^{DY} . Então, se f é estritamente convexa em \mathcal{L} , teremos que para todo $k \geq 1$,

$$g_k^T dk < 0. (54)$$

Demonstraçã: Para k=1 temos que $g_1^Td_1=g_1^T(-g_1)=-||g_1||^2<0$. Suponha que $g_k^Tdk<0$ para k-1. Como f é estritamente convexa, podemos extrair do fato de que $x_k=x_{k-1}+\alpha_{k-1}d_{k-1}$ e que $(g(x)-g(y))^T(x-y)>0, \forall x,y\in\mathcal{L}$

$$(g(x^k) - g(x^{k-1}))^T (x^k - x^{k-1}) = y_{k-1}^T \alpha_{k-1} d_{k-1} > 0 \Rightarrow y_{k-1}^T d_{k-1} = d_{k-1}^T y_{k-1} > 0.$$

Multiplicando a equação $d_k = -g_k + \beta_k d_{k-1}$ por g_k^T e escolhendo $\beta_k = \beta_k^{DY}$, obtemos

$$\begin{split} g_k^T d_k &= -||g_k|| + \beta_k^{DY} g_k^T d_{k-1} \\ &= -||g_k||^2 + \left(\frac{||g_k||^2}{d_{k-1}^T y_{k-1}}\right) g_k^T d_{k-1} \\ &= ||g_k||^2 \left(-1 + \frac{1}{d_{k-1}^T y_{k-1}} g_k^T d_{k-1}\right) \\ &= ||g_k||^2 \left(\frac{g_k^T d_{k-1} - d_{k-1}^T y_{k-1}}{d_{k-1}^T y_{k-1}}\right). \end{split}$$

Prosseguindo temos,

$$\begin{split} g_k^T d_k &= -||g_k|| + \beta_k^{DY} g_k^T d_{k-1} \\ &= ||g_k||^2 \left(\frac{g_k^T d_{k-1} - d_{k-1}^T y_{k-1}}{d_{k-1}^T y_{k-1}} \right) \\ &= ||g_k||^2 \left(\frac{g_k^T d_{k-1} - d_{k-1}^T g_k + d_{k-1}^T g_{k-1}}{d_{k-1}^T y_{k-1}} \right) \\ &= \frac{||g_k||^2}{d_{k-1}^T y_{k-1}} g_{k-1}^T d_{k-1}. \end{split}$$

Mostramos anteriormente que $d_{k-1}^T y_{k-1} > 0$ e pela hipótese de indução $g_{k-1}^T d_{k-1} < 0$, logo,

$$\frac{||g_k||^2}{d_{k-1}^T y_{k-1}} > 0 \Rightarrow \frac{||g_k||^2}{d_{k-1}^T y_{k-1}} g_{k-1}^T d_{k-1} = g_k^T d_k < 0$$

Portanto, por indução $g_k^T d_k < 0$ para todo $k \ge 1$.

Teorema 6.2. Suponha que a partir do ponto x_1 a Suposição 1.1 é válida. Considerando o método β_k^{DY} . Então, se f é estritamente convexa em \mathcal{L} e se α_k for escolhido pela busca linear de Goldstein, temos que

$$\lim\inf||g_k|| = 0. (55)$$

Demonstração: Pelo TVM e pelo fato de g ser Lipschitz Contínua segue que,

$$f(x_k + \alpha_k d_k) - f_k = \int_0^1 g(x_k + t\alpha_k d_k)^T (\alpha_k d_k) dt$$
$$= \alpha_k g_k^T d_k + \alpha_k \int_0^1 [g(x_k + t\alpha_k d_k) - g_k]^T d_k dt$$
$$\leq \alpha_k g_k^T d_k + \frac{1}{2} L \alpha_k^2 ||d_k||^2$$

Com a desigualdade anterior e pelo fato de $\delta_1 \alpha_k g_k^T d_k \leq f(x_k + \alpha_k d_k) - f_k$ implica que

$$\alpha_k \ge \frac{c|g_k^T d_k}{||d_k||^2} \tag{56}$$

Sendo $c = \frac{2(1-\delta)}{L}$. Como f é limitada inferiormente, temos da condição de Goldstein que

$$\sum_{k\geq 1} \alpha_k |g_k^T d_k| < \infty \tag{57}$$

Assim, pelas duas desigualdades anteriores segue que

$$\sum_{k>1} \frac{(g_k^T d_k)^2}{||d_k||^2} < \infty. \tag{58}$$

Agora, por contradição, iremos assumir que $\liminf_{k\to\infty}||g_k||\neq 0$. Então existe uma constante $\tau>0$ tal que para todo $k\geq 1$ teremos que

$$||g_k|| \ge \tau. \tag{59}$$

Observando que $g_k^Td_k=\frac{||g_k||^2}{d_{k-1}^Ty_{k-1}}\cdot g_{k-1}^Td_{k-1}$ é apenas β_k^{DY} , também temos que

$$\beta_k = \frac{g_k^T d_k}{g_{k-1}^T d_{k-1}}. (60)$$

Assim d_k pode ser reescrito como

$$d_k + g_k = \beta_k d_{k-1} \Rightarrow (d_k + g_k)^2 = (\beta_k d_{k-1})^2$$
(61)

$$= ||d_k||^2 = \beta_k^2 ||d_{k-1}||^2 - 2g_k^T d_k - ||g_k||^2$$
(62)

Dividindo ambos os lados por $(g_k^T d_k)^2$ e sabendo o valor de β_k teremos,

$$\frac{||d_k||^2}{(g_k^T d_k)^2} = \frac{||d_{k-1}||^2}{(g_{k-1}^T d_{k-1})^2} - \frac{2}{g_k^T d_k} - \frac{||g_k||^2}{(g_k^T d_k)^2}.$$
 (63)

Por outro lado, se denotarmos

$$l_{k-1} = \frac{g_k^T d_{k-1}}{g_{k-1}^T d_{k-1}}. (64)$$

Como $g_k^T d_k = \frac{||g_k||^2}{d_{k-1}^T y_{k-1}} \cdot g_{k-1}^T d_{k-1}$, assim pela equação acima podemos escrever como,

$$g_k^T d_k = \frac{1}{l_{k-1} - 1} \cdot ||g_k||^2.$$
 (65)

Substituindo a equação anterior em (63), teremos

$$\frac{||d_k||^2}{(g_k^T d_k)^2} = \frac{||d_{k-1}||^2}{(g_{k-1}^T d_{k-1})^2} + \frac{1 - l_{k-1}}{||g_k||^2}.$$
(66)

Somando esta expressão e observando $d_1 = -g_1$, obtemos

$$\frac{||d_k||^2}{(g_k^T d_k)^2} \le \sum_{i=1}^k \frac{1}{||g_i||^2}.$$
(67)

Então temos de acordo com a equação anterior e de $||g_k|| \ge \tau$ que

$$\frac{||d_k||^2}{(g_k^T d_k)^2} \le \frac{k}{\tau^2} \Rightarrow \sum_{k>1} \frac{(g_k^T d_k)^2}{||d_k||^2} = \infty$$
(68)

Então por (57) e a equação acima uma contradição.

Teorema 6.3. Suponha que a partir do ponto x_1 a Suposição 1.1 é válida. Considerando o método β_k^{DY} . Então, se f é uniformemente convexa em \mathcal{L} e se α_k for escolhido pela busca linear de Armijo, existe uma constante c1 > 0 tal que para todo $k \ge 1$,

$$g_k^T d_k \le -c_1 ||g_k||^2 \tag{69}$$

 $Al\acute{e}m\ disso,\ \lim ||g_k||=0.$

Demonstração: Segue do Teorema 6.1 que $g_k^T d_k < 0$ para todo $k \ge 1$. Analogamente ao teorema anterior, vamos utilizar o TVM, teremos

$$f(x_k + \alpha_k d_k) - f_k = \int_0^1 g(x_k + t\alpha_k d_k)^T (\alpha_k d_k) dt$$
$$= \alpha_k g_k^T d_k + \alpha_k \int_0^1 [g(x_k + t\alpha_k d_k) - g_k]^T d_k dt$$
$$\ge \alpha_k g_k^T d_k + \frac{1}{2} \eta \alpha_k^2 ||d_k||^2$$

Então de $(g_k^T d_k < 0), (f(x_k + \alpha_k d_k) - f(x - k) \le \delta \alpha_k g_k^T d_k)$ e pela última desigualdade que

$$\alpha_k \le \frac{c_2 |g_k^T d_k|}{||d_k||^2}$$

 $com c_2 = \frac{2(1-\delta)}{\eta}.$

Por g ser Lipschits, temos

$$|g_{k+1}^T d_k| \le ||g_{k+1} - g_k|| ||d_k|| \le \alpha_k ||d_k||^2 \tag{70}$$

Assim, por $(g_k^T d_k < 0)$ e pela equação anterior, temos que

$$l_{k-1} = \frac{g_{k+1}^T d_k - g_k^T d_k}{g_k^T d_k} \ge \frac{\alpha_k ||d_k||^2}{g_k^T d_k} \ge -Lc_2$$
(71)

Devido a $(g_k^T d_k < 0)$ temos que $l_{k-1} < 0$ e por f se uniformemente convexa, segue da equaçãol acima e de $g_k^T d_k = \frac{1}{l_{k-1}-1} \cdot ||g_k||^2$ que

$$g_k^T d_k \le -c_1 ||g_k||^2$$
, vale com $c_2 = \frac{1}{Lc_2}$

Por contradição, vamos assumir que $||g_k|| \geq \tau$, para algum $\tau > 0$. Assumindo f de acordo com unício do artigo, ou seja, (min f(x), $x \in \mathbb{R}$), pode-se mostrar que se o passo for escolhido pela busca de Armijo ou $\alpha_k = 1$ ou $\alpha_k \geq \frac{c_3|g_k^Td_k}{||d_k||^2}$, vale para cada k, onde $c_3 > 0$. Se existe uma subsequência infinita, digamos k_i tal que $\alpha_k = 1$. Então somando as iteradas e sendo f limitada inferiormente temos

$$\lim_{i \to \infty} g_{ki}^T d_{ki} = 0$$

Com isso, $||g_k|| \ge \tau$ e $g_k^T d_k \le -c_1 ||g_k||^2$, o que é um absurdo. Assim, $\alpha_k \ge \frac{c_3 |g_k^T d_k|}{||d_k||^2}$ vale para todo k suficientemente grande. Neste caso, de forma análoga ao teorema anterior, teremos

$$\sum_{k \geq 1} \frac{(g_k^T d_k)^2}{||d_k||^2} = \infty$$
e $\sum_{k \geq 1} \frac{(g_k^T d_k)^2}{||d_k||^2} < \infty$

o que é um absurdo. Portanto $\lim ||g_k|| = 0$.

Referências

- [1] A. Howard and C. Rorres. Álgebra linear com aplicações. *Tradução Claus Ivo Doering*, 8:21, 2001.
- [2] S. J. Leon. Álgebra linear com aplicações, 4a edição. Livros Técnicos e Científicos, 1999.
- [3] E. L. Lima. Curso de análise, vol i. Projeto Euclides, Impa, Rio de Janeiro, 1981.
- [4] E. L. Lima. Curso de análise, vol ii. Projeto Euclides, Impa, Rio de Janeiro, 1981.
- [5] L. Zhang, W. Zhou, and D. Li. Global convergence of the dy conjugate gradient method with armijo line search for unconstrained optimization problems. *Optimisation Methods and Software*, 22(3):511–517, 2007.